217 research outputs found

    Delocalized Entanglement of Atoms in optical Lattices

    Get PDF
    We show how to detect and quantify entanglement of atoms in optical lattices in terms of correlations functions of the momentum distribution. These distributions can be measured directly in the experiments. We introduce two kinds of entanglement measures related to the position and the spin of the atoms

    Quantum simulators, continuous-time automata, and translationally invariant systems

    Full text link
    The general problem of finding the ground state energy of lattice Hamiltonians is known to be very hard, even for a quantum computer. We show here that this is the case even for translationally invariant systems. We also show that a quantum computer can be built in a 1D chain with a fixed, translationally invariant Hamitonian consisting of nearest--neighbor interactions only. The result of the computation is obtained after a prescribed time with high probability.Comment: partily rewritten and important references include

    Counterexample to an additivity conjecture for output purity of quantum channels

    Get PDF
    A conjecture arising naturally in the investigation of additivity of classical information capacity of quantum channels states that the maximal purity of outputs from a quantum channel, as measured by the p-norm, should be multiplicative with respect to the tensor product of channels. We disprove this conjecture for p>4.79. The same example (with p=infinity) also disproves a conjecture for the multiplicativity of the injective norm of Hilbert space tensor products.Comment: 3 pages, 3 figures, revte

    Quantum state engineering, purification, and number resolved photon detection with high finesse optical cavities

    Full text link
    We propose and analyze a multi-functional setup consisting of high finesse optical cavities, beam splitters, and phase shifters. The basic scheme projects arbitrary photonic two-mode input states onto the subspace spanned by the product of Fock states |n>|n> with n=0,1,2,.... This protocol does not only provide the possibility to conditionally generate highly entangled photon number states as resource for quantum information protocols but also allows one to test and hence purify this type of quantum states in a communication scenario, which is of great practical importance. The scheme is especially attractive as a generalization to many modes allows for distribution and purification of entanglement in networks. In an alternative working mode, the setup allows of quantum non demolition number resolved photodetection in the optical domain.Comment: 14 pages, 10 figure

    Ensemble Quantum Computation with atoms in periodic potentials

    Full text link
    We show how to perform universal quantum computation with atoms confined in optical lattices which works both in the presence of defects and without individual addressing. The method is based on using the defects in the lattice, wherever they are, both to ``mark'' different copies on which ensemble quantum computation is carried out and to define pointer atoms which perform the quantum gates. We also show how to overcome the problem of scalability on this system
    • …
    corecore