330 research outputs found

    Quantum state engineering, purification, and number resolved photon detection with high finesse optical cavities

    Full text link
    We propose and analyze a multi-functional setup consisting of high finesse optical cavities, beam splitters, and phase shifters. The basic scheme projects arbitrary photonic two-mode input states onto the subspace spanned by the product of Fock states |n>|n> with n=0,1,2,.... This protocol does not only provide the possibility to conditionally generate highly entangled photon number states as resource for quantum information protocols but also allows one to test and hence purify this type of quantum states in a communication scenario, which is of great practical importance. The scheme is especially attractive as a generalization to many modes allows for distribution and purification of entanglement in networks. In an alternative working mode, the setup allows of quantum non demolition number resolved photodetection in the optical domain.Comment: 14 pages, 10 figure

    Ensemble Quantum Computation with atoms in periodic potentials

    Full text link
    We show how to perform universal quantum computation with atoms confined in optical lattices which works both in the presence of defects and without individual addressing. The method is based on using the defects in the lattice, wherever they are, both to ``mark'' different copies on which ensemble quantum computation is carried out and to define pointer atoms which perform the quantum gates. We also show how to overcome the problem of scalability on this system

    All Teleportation and Dense Coding Schemes

    Get PDF
    We establish a one-to-one correspondence between (1) quantum teleportation schemes, (2) dense coding schemes, (3) orthonormal bases of maximally entangled vectors, (4) orthonormal bases of unitary operators with respect to the Hilbert-Schmidt scalar product, and (5) depolarizing operations, whose Kraus operators can be chosen to be unitary. The teleportation and dense coding schemes are assumed to be ``tight'' in the sense that all Hilbert spaces involved have the same finite dimension d, and the classical channel involved distinguishes d^2 signals. A general construction procedure for orthonormal bases of unitaries, involving Latin Squares and complex Hadamard Matrices is also presented.Comment: 21 pages, LaTe

    Tripartite entanglement and quantum relative entropy

    Get PDF
    We establish relations between tripartite pure state entanglement and additivity properties of the bipartite relative entropy of entanglement. Our results pertain to the asymptotic limit of local manipulations on a large number of copies of the state. We show that additivity of the relative entropy would imply that there are at least two inequivalent types of asymptotic tripartite entanglement. The methods used include the application of some useful lemmas that enable us to analytically calculate the relative entropy for some classes of bipartite states.Comment: 7 pages, revtex, no figures. v2: discussion about recent results, 2 refs. added. Published versio

    On 1-qubit channels

    Get PDF
    The entropy H_T(rho) of a state rho with respect to a channel T and the Holevo capacity of the channel require the solution of difficult variational problems. For a class of 1-qubit channels, which contains all the extremal ones, the problem can be significantly simplified by associating an Hermitian antilinear operator theta to every channel of the considered class. The concurrence of the channel can be expressed by theta and turns out to be a flat roof. This allows to write down an explicit expression for H_T. Its maximum would give the Holevo (1-shot) capacity.Comment: 12 pages, several printing or latex errors correcte

    "Squashed Entanglement" - An Additive Entanglement Measure

    Full text link
    In this paper, we present a new entanglement monotone for bipartite quantum states. Its definition is inspired by the so-called intrinsic information of classical cryptography and is given by the halved minimum quantum conditional mutual information over all tripartite state extensions. We derive certain properties of the new measure which we call "squashed entanglement": it is a lower bound on entanglement of formation and an upper bound on distillable entanglement. Furthermore, it is convex, additive on tensor products, and superadditive in general. Continuity in the state is the only property of our entanglement measure which we cannot provide a proof for. We present some evidence, however, that our quantity has this property, the strongest indication being a conjectured Fannes type inequality for the conditional von Neumann entropy. This inequality is proved in the classical case.Comment: 8 pages, revtex4. v2 has some more references and a bit more discussion, v3 continuity discussion extended, typos correcte

    Conversion of a general quantum stabilizer code to an entanglement distillation protocol

    Get PDF
    We show how to convert a quantum stabilizer code to a one-way or two-way entanglement distillation protocol. The proposed conversion method is a generalization of those of Shor-Preskill and Nielsen-Chuang. The recurrence protocol and the quantum privacy amplification protocol are equivalent to the protocols converted from [[2,1]] stabilizer codes. We also give an example of a two-way protocol converted from a stabilizer better than the recurrence protocol and the quantum privacy amplification protocol. The distillable entanglement by the class of one-way protocols converted from stabilizer codes for a certain class of states is equal to or greater than the achievable rate of stabilizer codes over the channel corresponding to the distilled state, and they can distill asymptotically more entanglement from a very noisy Werner state than the hashing protocol.Comment: LaTeX2e, 18 pages, 1 figure. Version 4 added an example of two-way protocols better than the recurrence protocol and the quantum privacy amplification protocol. Version 2 added the quantum privacy amplification protocol as an example converted from a stabilizer code, and corrected many errors. Results unchanged from V

    Quantum computation in optical lattices via global laser addressing

    Full text link
    A scheme for globally addressing a quantum computer is presented along with its realisation in an optical lattice setup of one, two or three dimensions. The required resources are mainly those necessary for performing quantum simulations of spin systems with optical lattices, circumventing the necessity for single qubit addressing. We present the control procedures, in terms of laser manipulations, required to realise universal quantum computation. Error avoidance with the help of the quantum Zeno effect is presented and a scheme for globally addressed error correction is given. The latter does not require measurements during the computation, facilitating its experimental implementation. As an illustrative example, the pulse sequence for the factorisation of the number fifteen is given.Comment: 11 pages, 10 figures, REVTEX. Initialisation and measurement procedures are adde

    Teleportation and entanglement distillation in the presence of correlation among bipartite mixed states

    Get PDF
    The teleportation channel associated with an arbitrary bipartite state denotes the map that represents the change suffered by a teleported state when the bipartite state is used instead of the ideal maximally entangled state for teleportation. This work presents and proves an explicit expression of the teleportation channel for the teleportation using Weyl's projective unitary representation of the space of 2n-tuples of numbers from Z/dZ for integers d>1, n>0, which has been known for n=1. This formula allows any correlation among the n bipartite mixed states, and an application shows the existence of reliable schemes for distillation of entanglement from a sequence of mixed states with correlation.Comment: 12 pages, 1 figur

    Further results on the cross norm criterion for separability

    Full text link
    In the present paper the cross norm criterion for separability of density matrices is studied. In the first part of the paper we determine the value of the greatest cross norm for Werner states, for isotropic states and for Bell diagonal states. In the second part we show that the greatest cross norm criterion induces a novel computable separability criterion for bipartite systems. This new criterion is a necessary but in general not a sufficient criterion for separability. It is shown, however, that for all pure states, for Bell diagonal states, for Werner states in dimension d=2 and for isotropic states in arbitrary dimensions the new criterion is necessary and sufficient. Moreover, it is shown that for Werner states in higher dimensions (d greater than 2), the new criterion is only necessary.Comment: REVTeX, 19 page
    • …
    corecore