6 research outputs found

    Characterization of Botulinum Neurotoxin Type A Neutralizing Monoclonal Antibodies and Influence of Their Half-Lives on Therapeutic Activity

    Get PDF
    Botulinum toxins, i.e. BoNT/A to/G, include the most toxic substances known. Since botulism is a potentially fatal neuroparalytic disease with possible use as a biowarfare weapon (Centers for Disease Control and Prevention category A bioterrorism agent), intensive efforts are being made to develop vaccines or neutralizing antibodies. The use of active fragments from non-human immunoglobulins (F(ab')2, Fab', scFv), chemically modified or not, may avoid side effects, but also largely modify the in vivo half-life and effectiveness of these reagents. We evaluated the neutralizing activity of several monoclonal anti-BoNT/A antibodies (mAbs). F(ab')2 fragments, native or treated with polyethyleneglycol (PEG), were prepared from selected mAbs to determine their half-life and neutralizing activity as compared with the initial mAbs. We compared the protective efficiency of the different biochemical forms of anti-toxin mAbs providing the same neutralizing activity. Among fourteen tested mAbs, twelve exhibited neutralizing activity. Fragments from two of the best mAbs (TA12 and TA17), recognizing different epitopes, were produced. These two mAbs neutralized the A1 subtype of the toxin more efficiently than the A2 or A3 subtypes. Since mAb TA12 and its fragments both exhibited the greatest neutralizing activity, they were further evaluated in the therapeutic experiments. These showed that, in a mouse model, a 2- to 4-h interval between toxin and antitoxin injection allows the treatment to remain effective, but also suggested an absence of correlation between the half-life of the antitoxins and the length of time before treatment after botulinum toxin A contamination. These experiments demonstrate that PEG treatment has a strong impact on the half-life of the fragments, without affecting the effectiveness of neutralization, which was maintained after preparation of the fragments. These reagents may be useful for rapid treatment after botulinum toxin A contamination

    Neutralising Antibodies against Ricin Toxin

    Get PDF
    The Centers for Disease Control and Prevention have listed the potential bioweapon ricin as a Category B Agent. Ricin is a so-called A/B toxin produced by plants and is one of the deadliest molecules known. It is easy to prepare and no curative treatment is available. An immunotherapeutic approach could be of interest to attenuate or neutralise the effects of the toxin. We sought to characterise neutralising monoclonal antibodies against ricin and to develop an effective therapy. For this purpose, mouse monoclonal antibodies (mAbs) were produced against the two chains of ricin toxin (RTA and RTB). Seven mAbs were selected for their capacity to neutralise the cytotoxic effects of ricin in vitro. Three of these, two anti-RTB (RB34 and RB37) and one anti-RTA (RA36), when used in combination improved neutralising capacity in vitro with an IC50 of 31 ng/ml. Passive administration of association of these three mixed mAbs (4.7 µg) protected mice from intranasal challenges with ricin (5 LD50). Among those three antibodies, anti-RTB antibodies protected mice more efficiently than the anti-RTA antibody. The combination of the three antibodies protected mice up to 7.5 hours after ricin challenge. The strong in vivo neutralising capacity of this three mAbs combination makes it potentially useful for immunotherapeutic purposes in the case of ricin poisoning or possibly for prevention

    A multicentre evaluation of the NG-test DetecTool OXA-23 for the rapid detection of OXA-23 carbapenemase directly from blood cultures

    No full text
    Objectives A multicentre study evaluating NG-Test DetecTool OXA-23 for the detection of OXA-23 carbapenemase directly from positive blood cultures (PBCs). Methods The NG-Test DetecTool OXA-23 is an immunoassay that integrates a sample preparation device. We evaluated NG-Test DetecTool OXA-23 on 189 spiked and 126 clinical PBCs. The clinical samples’ standard-of-care procedure consisted of bacterial identification from the first day of positivity by MALDI-TOF MS, conventional culture and antimicrobial susceptibility testing. The immunoassay results were verified molecularly. The strains used for the spiked samples consisted of well-characterized Acinetobacter baumannii and Proteus mirabilis strains. Results The NG-Test DetecTool OXA-23 was evaluated on 315 PBCs and revealed sensitivity of 100% (95% CI: 98.21%–100.00%) and specificity of 100% (95% CI: 96.73%–100.00%). It provided 204 true-positive results for OXA-23 in 196 bottles with carbapenem-resistant A. baumannii (CRAB) and 8 bottles with carbapenem-resistant P. mirabilis and also provided 111 true-negative results. There were no false-positive and no false-negative results. Among the 315 PBCs studied, 83 clinical blood cultures collected in the ICU of a Greek university hospital, which were tested prospectively, all yielded CRAB, and OXA-23 was correctly detected in all samples from the first day of positivity using the NG-Test DetecTool OXA-23. Conclusions The NG-Test DetecTool OXA-23 has exhibited excellent sensitivity and specificity for OXA-23 detection in PBCs and can provide valuable information for appropriate selection of antibiotic therapy and early implementation of infection control measures
    corecore