104 research outputs found

    The beta component of gamma-band auditory steady-state responses in patients with schizophrenia

    Get PDF
    Ā© The Author(s) 2021. Tis article is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.Abstract: The mechanisms underlying circuit dysfunctions in schizophrenia (SCZ) remain poorly understood. Auditory steady-state responses (ASSRs), especially in the gamma and beta band, have been suggested as a potential biomarker for SCZ. While the reduction of 40 Hz power for 40 Hz drive has been well established and replicated in SCZ patients, studies are inconclusive when it comes to an increase in 20 Hz power during 40 Hz drive. There might be several factors explaining the inconsistencies, including differences in the sensitivity of the recording modality (EEG vs MEG), differences in stimuli (click-trains vs amplitude-modulated tones) and large differences in the amplitude of the stimuli. Here, we used a computational model of ASSR deficits in SCZ and explored the effect of three SCZ-associated microcircuit alterations: reduced GABA activity, increased GABA decay times and NMDA receptor hypofunction. We investigated the effect of input strength on gamma (40 Hz) and beta (20 Hz) band power during gamma ASSR stimulation and saw that the pronounced increase in beta power during gamma stimulation seen experimentally could only be reproduced in the model when GABA decay times were increased and only for a specific range of input strengths. More specifically, when the input was in this specific range, the rhythmic drive at 40 Hz produced a strong 40 Hz rhythm in the control network; however, in the ā€˜SCZ-likeā€™ network, the prolonged inhibition led to a so-called ā€˜beat-skippingā€™, where the network would only strongly respond to every other input. This mechanism was responsible for the emergence of the pronounced 20 Hz beta peak in the power spectrum. The other two microcircuit alterations were not able to produce a substantial 20 Hz component but they further narrowed the input strength range for which the network produced a beta component when combined with increased GABAergic decay times. Our finding that the beta component only existed for a specific range of input strengths might explain the seemingly inconsistent reporting in experimental studies and suggests that future ASSR studies should systematically explore different amplitudes of their stimuli. Furthermore, we provide a mechanistic link between a microcircuit alteration and an electrophysiological marker in schizophrenia and argue that more complex ASSR stimuli are needed to disentangle the nonlinear interactions of microcircuit alterations. The computational modelling approach put forward here is ideally suited to facilitate the development of such stimuli in a theory-based fashion.Peer reviewe

    Evolving spiking neural networks for temporal pattern recognition in the presence of noise

    Get PDF
    Creative Commons - Attribution-NonCommercial-NoDerivs 3.0 United StatesNervous systems of biological organisms use temporal patterns of spikes to encode sensory input, but the mechanisms that underlie the recognition of such patterns are unclear. In the present work, we explore how networks of spiking neurons can be evolved to recognize temporal input patterns without being able to adjust signal conduction delays. We evolve the networks with GReaNs, an artificial life platform that encodes the topology of the network (and the weights of connections) in a fashion inspired by the encoding of gene regulatory networks in biological genomes. The number of computational nodes or connections is not limited in GReaNs, but here we limit the size of the networks to analyze the functioning of the networks and the effect of network size on the evolvability of robustness to noise. Our results show that even very small networks of spiking neurons can perform temporal pattern recognition in the presence of input noiseFinal Published versio

    Determinants of gain modulation enabled by short-term depression at an inhibitory cerebellar synapse

    Get PDF
    Abstract from the 23rd Annual Computational Neuroscience Meeting: CNS 2014. Ā© 2014 Bampasakis et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise statedNeurons adapt rapidly the slope, also known as gain, of their input-output function to time-varying conditions. Gain modulation is a prominent mechanism in many brain processes, such as auditory processing and attention scaling of orientation tuning curves.Peer reviewe

    The Information Complexity of Navigating with Momentum

    Get PDF
    Ā© 2022 Massachusetts Institute of Technology Published under a Creative Commons Attribution 4.0 International (CC BY 4.0) license.Many models of organism navigation concern themselves in essence just with the sequence of locations visited and how to manage it. However, larger and bulkier organisms have also to deal with managing momentum. We expect that this affects the cognitive management of movement. Here we propose a simple model for the information processing complexity of navigation when velocity and acceleration are considered, moving away from a kinematic perspective to a partially dynamic model, to separate the effects of location and momentum management. The work is discussed in the context of recent neurobiological research suggesting that biological agents plan around acceleration and deceleration phases, showing high neural activity during their body's velocity changes

    The Effect of Different Forms of Synaptic Plasticity on Pattern Recognition in the Cerebellar Cortex

    Get PDF
    ā€œThe original publication is available at www.springerlink.comā€. Copyright Springer.Many cerebellar learning theories assume that long-term depression (LTD) of synapses between parallel fibres (PFs) and Purkinje cells (PCs) provides the basis for pattern recognition in the cerebellum. Previous work has suggested that PCs can use a novel neural code based on the duration of silent periods. These simulations have used a simplified learning rule, where the synaptic conductance was halved each time a pattern was learned. However, experimental studies in cerebellar slices show that the synaptic conductance saturates and is rarely reduced to less than 50% of its baseline value. Moreover, the previous simulations did not include plasticity of the synapses between inhibitory interneurons and PCs. Here we study the effect of LTD saturation and inhibitory synaptic plasticity on pattern recognition in a complex PC model. We find that the PC model is very sensitive to the value at which LTD saturates, but is unaffected by inhibitory synaptic plasticity.Peer reviewe

    EEG Spectral Feature Modulations Associated with Fatigue in Robot-Mediated Upper Limb Gross and Fine Motor Interactions

    Get PDF
    Ā© 2022 Dissanayake, Steuber and Amirabdollahian. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). https://creativecommons.org/licenses/by/4.0/This paper investigates the EEG spectral feature modulations associated with fatigue induced by robot-mediated upper limb gross and fine motor interactions. Twenty healthy participants were randomly assigned to perform a gross motor interaction with Haptic MASTER or a fine motor interaction with SCRIPT passive orthosis for 20 minutes or until volitional fatigue. Relative and ratio band power measures were estimated from the EEG data recorded before and after the robot-mediated interactions. Paired samples t-tests found a significant increase in the relative alpha band power and a significant decrease in the relative delta band power due to the fatigue induced by the robot-mediated gross and fine motor interactions. The gross motor task also significantly increased the (Īø + Ī±)/Ī² and Ī±/Ī² ratio band power measures, whereas the fine motor task increased the relative theta band power. Furthermore, the robot-mediated gross movements mostly changed the EEG activity around the central and parietal brain regions, whereas the fine movements mostly changed the EEG activity around the frontopolar and central brain regions. The subjective ratings suggest that the gross motor task may have induced physical fatigue, whereas the fine motor task may have induced mental fatigue. Therefore, findings affirm that changes to localised brain activity patterns indicate fatigue developed from the robot-mediated interactions. It can also be concluded that the regional differences in the prominent EEG spectral features are most likely due to the differences in the nature of the task (fine/gross motor and distal/proximal upper limb) that may have differently altered an individualā€™s physical and mental fatigue level. The findings could potentially be used in future to detect fatigue during robot-mediated post-stroke therapies.Peer reviewedFinal Published versio
    • ā€¦
    corecore