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This paper investigates the EEG spectral feature modulations associated with fatigue

induced by robot-mediated upper limb gross and fine motor interactions. Twenty

healthy participants were randomly assigned to perform a gross motor interaction

with HapticMASTER or a fine motor interaction with SCRIPT passive orthosis for

20 min or until volitional fatigue. Relative and ratio band power measures were

estimated from the EEG data recorded before and after the robot-mediated interactions.

Paired-samples t-tests found a significant increase in the relative alpha band power

and a significant decrease in the relative delta band power due to the fatigue induced

by the robot-mediated gross and fine motor interactions. The gross motor task also

significantly increased the (θ + α)/β and α/β ratio band power measures, whereas

the fine motor task increased the relative theta band power. Furthermore, the robot-

mediated gross movements mostly changed the EEG activity around the central and

parietal brain regions, whereas the fine movements mostly changed the EEG activity

around the frontopolar and central brain regions. The subjective ratings suggest that

the gross motor task may have induced physical fatigue, whereas the fine motor task

may have induced mental fatigue. Therefore, findings affirm that changes to localised

brain activity patterns indicate fatigue developed from the robot-mediated interactions.

It can also be concluded that the regional differences in the prominent EEG spectral

features are most likely due to the differences in the nature of the task (fine/gross motor

and distal/proximal upper limb) that may have differently altered an individual’s physical

and mental fatigue level. The findings could potentially be used in future to detect and

moderate fatigue during robot-mediated post-stroke therapies.

Keywords: electroencephalogram, fatigue in upper limb robot-mediated interactions, HapticMASTER, SCRIPT

passive orthosis, relative band power, band power ratios, independent component analysis, statistical analysis

1. INTRODUCTION

Fatigue experienced during post-stroke upper limb rehabilitation and its implications for the
therapy outcome are often overlooked in existing therapy sessions. Many stroke survivors (about 30
to 70%) have reported persistence of fatigue as a debilitating symptom (Staub and Bogousslavsky,
2001; Lerdal et al., 2009). It is more likely that the increased motor/cognitive processing demands
required during motor retraining exercises may exacerbate stroke patients’ fatigue levels. The
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elevated fatigue levels may impair motivation and compliance
to effectively perform the therapeutic interactions and the
long-term commitment toward rehabilitation. Furthermore,
some studies have reported that high-intensity fatiguing tasks
are detrimental to both motor performance and learning
(Godwin and Schmidt, 1971; Carron, 1972; Thomas et al., 1975;
Williams and Singer, 1975; Branscheidt et al., 2019), whereas
some investigations have only found performance impairments
(Alderman, 1965; Carron, 1969; Cotten et al., 1972). Sterr
and Furlan (2015) hypothesised that the relationship between
training intensity and motor performance of constraint-induced
therapy in chronic hemiparetic stroke patients is modulated
by fatigue in addition to the residual motor ability. Foong
et al. (2019) also suggested that the poor performance in
the nBETTER (Neurostyle Brain Exercise Therapy Towards
Enhanced Recovery) system could be due to the mental fatigue
that progressed during the therapy. In Prasad’s et al. (2010)
study where chronic hemiplegic stroke patients performed
both physical practice and motor imagery, a trend of more
considerable variability in the brain-computer interface (BCI)
performance was observed with the rise in individual fatigue
levels. Therefore, it is highly questionable whether continuing
a stroke therapy while or beyond fatigued conditions would
impede motor performance and motor skill relearning during
therapeutic interactions.

Despite its clinical importance, there exists no unambiguous
and universally agreed definition for the term fatigue. In general,
fatigue is a sensation of tiredness, weariness or lack of energy
that is experienced following or during prolonged physical
or mental activity. Fatigue can be broadly categorised into
two types: physical (or muscular) fatigue and mental fatigue.
Physical fatigue is defined as a failure to maintain force (or
power output) during sustained muscle contractions (Gibson
and Edwards, 1985). In contrast, mental fatigue is a subjective
feeling of tiredness experienced during or after prolonged periods
of demanding cognitive activity (Lorist et al., 2005). Recent
studies have also shown that mental fatigue impairs physical
performance, especially in sports-related activities (Marcora
et al., 2009; Mehta and Parasuraman, 2014; Van Cutsem et al.,
2017). Electroencephalogram (EEG) has shown to be the most
predictive and promising biomarker of fatigue (Lal and Craig,
2001; Tran et al., 2020). To date, many studies have investigated
EEG feature modulations associated with fatigue, including
fatigue induced by driving tasks (Lal and Craig, 2002; Eoh et al.,
2005; Tran et al., 2008; Jap et al., 2009; Craig et al., 2012; Zhao
et al., 2012; Borghini et al., 2014), voluntary motor tasks (Yao
et al., 2009; Wang et al., 2017), cognitive tasks (Massar et al.,
2010; Tanaka et al., 2012; Trejo et al., 2015), brain-computer
interfaces (Käthner et al., 2014), exercises and sports-related
activities (Bailey et al., 2008; Barwick et al., 2012; Baumeister
et al., 2012; Xu et al., 2018), visual display terminal tasks (Cheng
and Hsu, 2011; Fan et al., 2015). However, the alterations in EEG
activity caused by fatigue accumulated following robot-mediated
interactions have not yet been comprehensively explored to the

Abbreviations: αrelative, relative alpha band power; βrelative, relative beta band

power; δrelative, relative delta band power; θrelative, relative theta band power.

author’s knowledge. EEG-based fatigue indices could be used to
mitigate fatigue accumulated during human-robot interactions,
thereby enhancing the efficacy of rehabilitation and reducing
fatigue-related risks in human-robot collaboration tasks.

EEG consists of a wide frequency spectrum, and spectral
features (band power and band power ratios) are frequently used
as indicators of fatigue. Table 1 summarises the findings of 16
studies over the last two decades identified by a systematic review
on EEG spectral feature modulations caused by fatigue. It was
evident that in most studies, θ and α band power increased and
β band power decreased significantly as a result of fatigue (Lal
and Craig, 2002; Eoh et al., 2005; Barwick et al., 2012; Craig et al.,
2012; Zhao et al., 2012; Käthner et al., 2014; Fan et al., 2015;
Trejo et al., 2015; Zou et al., 2015; Wang et al., 2017; Xu et al.,
2018). Some studies investigated the variations in delta band
power as well; however, not many studies were able to identify
significant variations with fatigue (Caldwell et al., 2002; Lal and
Craig, 2002; Jap et al., 2009; Craig et al., 2012; Tanaka et al.,
2012; Zhao et al., 2012; Chen et al., 2013; Fan et al., 2015). In
these studies, EEG band power is given as absolute band power
or relative band power. The relative band power is defined as a
ratio between the absolute band power of each frequency band
and the total power of all frequency bands in consideration.
EEG band power ratios: (θ + α)/β , α/β , (θ + α)/(α + β), and
θ/β were also used in some studies since the basic band powers
can be insufficient to observe the shift of brain activity from
fast waves to slow waves (Eoh et al., 2005; Jap et al., 2009; Fan
et al., 2015). EEG band power ratios showed a significant increase
with fatigue build-up. Eoh et al. (2005) stated that the index
(θ+α)/β was amore reliable fatigue indicator during a simulated
driving task due to the mutual addition of α and θ activity
during the repetitive phase transition between wakefulness and
microsleep. Jap et al. (2009) also reported a greater increase
in the index (θ + α)/β , in comparison to the other power
ratios, when a person experienced a fatigued state at the end
of a monotonous simulated driving task. Most studies have also
found a widespread topographical distribution in the changes in
EEG spectral features with fatigue. However, some studies are
equivocal and need further exploration (Jap et al., 2009; Cheng
and Hsu, 2011; Baumeister et al., 2012; Tanaka et al., 2012; Chen
et al., 2013). Variations in methodological approaches, including
low sample size, differences in the fatiguing study protocol,
the number of electrodes used, the electrode placement and
the feature definition, could be a possible explanation for the
discrepancies across the studies.

The type of fatigue experienced during robot-mediated
exercises may depend on the exercise mode, intensity and
condition of the patient. For instance, the upper limb joints and
muscles involved in an interaction may vary from one therapy
to another depending on the severity of the impairment of
fine or gross motor skills. Gross motor skill retraining exercises
such as arm reach/return exercises are primarily involved in the
movement and coordination of proximal joints and muscles of
the upper limb (shoulder and arm). In contrast, fine motor skill
retraining exercises involve coordination of the distal joints and
muscles of the upper limb (hand, wrist, and fingers). Cowley
and Gates (2017) found that proximal fatigue in a repetitive,
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TABLE 1 | Literature summary on modulations in the EEG spectral features with fatigue.

Reference Description No of

participants

No of

electrodes

δ θ α β
(θ+α)

β
α
β

(θ+α)
(α+β)

θ
β

Electrode locations or

brain regions modulated

by fatigue

Barwick et al.

(2012)

Fatigue during

administration of a

neuropsychological test

battery

14 42 - ↑R ↑R ↓R - - - - F, C, P, O

Baumeister et al.

(2012)

Effects of fatigue induced by

a cycling exercise on knee

joint reproduction task

12 22 - ↓ ↓L,U - - - - - F3, Fz, F4, FC3, FCz, FC4,

P4, O1, Oz, O2, T5

Chen et al. (2013) Fatigue induced by

watching 3DTV

10 16 ↑R NS ↓R ↓R ↑ ↑ ↑ ↑ FP1, FP2, F3, C3, C4, F7,

F8, T5

Cheng and Hsu

(2011)

Mental fatigue induced by

visual display terminal tasks

20 7 - ↑R ↓R NS ↓ NSa - - F3, Fz, F4, Cz, Pz, O1, O2

Craig et al. (2012) Fatigue induced by

monotonous simulated

driving task

48 32 NS ↑ ↑L,U ↑ - - - - FL, FM, FR, CL, CM, CR,

POL, POM, POR

Eoh et al. (2005) Fatigue during a simulated

driving task

8 8 - NS ↑R ↓R ↑ ↑a - -

Fan et al. (2015) Mental fatigue in visual

search task

10 64 NS NS ↑R ↓R ↑ ↑ ↑ ↑ FP, IF, F, C, P, O, T, PT

Jap et al. (2009) Fatigue induced during a

monotonous driving session

52 30 ∗ ∗ ↓ ↓ ↑ ↑ ↑ ↑ F, C, P, T, EB

Käthner et al.

(2014)

Mental fatigue during P300

brain computer interface

12 31 - ↑ ↑ - - - - - F3, Fz, F4, FC5, FC3, FCz,

FC4, FC6, C5, C3, Cz, C4,

C6, CP5, CP3, CPz, CP4,

CP6, P3, P1, Pz, P2,

P4,PO7, PO3, POz, PO4,

PO8, O1, O2

Lal and Craig

(2002)

Fatigue during simulated

driving task

35 19 ↑ ↑ ↑ ↑ - - - - EB

Tanaka et al.

(2012)

Mental fatigue induced by

0(NS) or 2-back test

18 11 NS ↑ ↓ ↓ - - - ↑ Fz, P3, Pz, O1, O2

Trejo et al. (2015) Mental fatigue induced by a

sustained low-workload

mental arithmetic task

16 2 - ↑ ↑ - - - - - Fz, Pz

Wang et al. (2017) Muscle fatigue during right

arm side lateral raise task

with loads

18 2 - - ↑ NS - - - - C3, C4

Xu et al. (2018) Fatigue in mental(NS) and

physical-mental task

14 16 - - - ↓R - ↑ - - C3, P3, Pz, Oz, T3, T4, T5

Zhao et al. (2012) Mental fatigue in simulated

driving task

13 32 NS ↑R ↑R ↓R - - - - F, C, P, O, T

Zou et al. (2015) Stereoscopic 3D visual

fatigue caused by

vergence-accommodation

conflict

11 30 - NS ↑R ↓R ∗ ∗ NS NS F, C, P, EB

↑ = significant increase; ↓ = significant decrease; * = significant, but the direction of change is not specified; NS = no significant change; - = not reported; R = relative band power

measures were considered; L, U = lower and upper bands were considered; a = β/α was reported; The brain regions denoted by FP, IF, F, FL, FM, FR, FC, C, CL, CM, CR, P, PO, O, T,

PT, POL, POM, POR, and EB corresponds to frontopolar (or pre-frontal), inferior frontal, frontal, left frontal, midline frontal, right frontal, fronto-central, central, central left, midline central,

central right, parietal, parieto-occipital, occipital, temporal, posterior temporal, posterior left, midline posterior, posterior right and entire brain average.

timed movement task significantly changes the movement in
trunk shoulder and elbow kinematics, whereas the changes were
mainly in wrist and hand movement due to distal muscle fatigue.
Therefore, in general, repetitive gross motor skill retraining
exercises may induce more physical fatigue than fine motor skill
retraining exercises. In addition, most therapeutic fine motor

activities require considerable attention and decision-making
skills combined with hand, wrist and finger movements;
therefore, they may induce more mental fatigue than most gross
motor exercises. As the type of prominent fatigue developed
during a robot-mediated interaction may vary depending on the
physical and mental workload associated with the task, cortical
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FIGURE 1 | Fatigue inducing robot-mediated interactions. (A) Robot-mediated gross motor interaction (arm reach/return task) using HapticMASTER, and (B)

robot-mediated fine motor interaction (hand open/close task) using SCRIPT passive orthosis.

sites that show significant variations in EEG spectral features
following fatigue may differ between interactions. However,
these differences between gross and fine motor robot-mediated
interactions are not systematically investigated.

In this preliminary experiment, we hypothesised that the
EEG correlates of fatigue induced by robot-mediated interactions
are specific to the physical or cognitive nature of the task and
the differences in the usage of the proximal or distal upper
limb. The gross movements (arm reach/return) were performed
using the HapticMASTER (Motekforce Link, The Netherland)
(Amirabdollahian et al., 2007; Chemuturi et al., 2013), and
the fine movements (hand open/close) were performed using
the SCRIPT passive orthosis (Amirabdollahian et al., 2014).
Given the differences in the two tasks, it could be expected
that the gross motor task may induce more physical fatigue
than the fine motor task, in which more mental fatigue may be
visible. Therefore, it was anticipated that the resulting statistically
significant differences in EEG spectral features might show
varying topographical distributions between the two robot-
mediated interactions. Furthermore, significant changes to the
EEG spectral features localised around the motor cortex were
expected following the robot-mediated gross movements since
fatigue may affect motor coordination skills. In the fine motor
robot-mediated interaction that requires more attention and
decision making, significant changes to the frontopolar brain
activities were expected in addition to the attenuation in the
activities around the motor cortex.

2. MATERIALS AND METHODS

2.1. Ethical Approval
The experiment was approved by the Science and Technology
Ethics Committee with Delegated Authority of the University
of Hertfordshire (Protocol numbers: COM/PG/UH/00100 and
aCOM/PG/UH/00100).

2.2. Participants
Twenty healthy right-handed volunteers, who were at least 20
years of age (average age of the sample was 32 ± 10 years; mean
± SD) and with no history of severe injury to the head, brain,
or right hand participated in this experiment. Right-handedness

was considered since both robotic interfaces were constrained
to be used only by the right upper limb due to their hardware
configurations and setup. All participants had normal vision
or corrected to normal vision. All participants signed informed
consent forms before participation.

2.3. Fatigue Inducing Robot-Mediated
Interactions
Given the consent to take part in the experiment, participants
were randomly assigned into two groups: A and B, with
10 participants in each group. Participants in group A
performed visually guided arm reach/return movements
with HapticMASTER (gross motor task, Figure 1A), whereas
participants in group B performed hand open/close movements
with SCRIPT passive orthosis (fine motor task, Figure 1B).
Both robot-mediated interactions were performed for 20-min
or until volitional fatigue. The virtual reality environment of
the GENTLE/A rehabilitation system (Chemuturi et al., 2013)
was used for the gross motor task. Target point locations were
modified so that the trajectory covered by the movement of
the HapticMASTER robot arm was mapped into a straight
line connecting only two virtual target points. In addition, the
HapticMASTER was set to active mode so that the participants
should initiate the movement and reach the target points by
themselves. The virtual reality game “sea shell,” developed
for the SCRIPT system, was used as the fine motor task
(Amirabdollahian et al., 2014). Participants performed hand
open/close gestures to open/close a seashell underwater to catch
a fish near the seashell. Both robot-mediated interactions were
performed using only the right hand, and participants were
asked to keep their left hand in a relaxed position throughout
the task. The distance between the computer monitor and the
participant’s eye was set to around 120 cm for both groups.

2.4. EEG Data Acquisition
Continuous EEG signals were recorded before, during and
after the robotic interactions using an eight-channel EEG
data acquisition system, g.MOBIlab+ (g.tec medical engineering
GmbH, Austria) with active electrodes. According to the
International 10-10 system of electrode placement (American,
2006), FP1, F3, FC3, C3, C4, P3, O1, and T7 electrode
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FIGURE 2 | EEG electrode placement according to the International 10-10

system of electrode placement. Red circles represent the eight active

electrodes selected for the data acquisition. The blue circle represents the

reference electrode location. The green circle represents the ground electrode

location.

locations were selected as shown in Figure 2. All electrodes were
referenced to the right earlobe (A2), and FPz was used as the
ground electrode. Signals acquired by the active electrodes are
pre-amplified directly at the electrode (Pinegger et al., 2016).
Also, the active electrode system reduces or avoids artifacts
caused by high impedance between the electrode(s) and the skin
(e.g., 50/60 Hz coupling, electrode or cable movement artifacts,
background noise) (g.tec medical engineering GmbH, 2014b).
The sampling rate, lower and upper cut-off frequencies of the
bandpass filter of the amplifier are fixed at 256, 0.5, and 100
Hz, respectively, by themanufacturer. Therefore, signals acquired
from this device were sampled at 256 Hz and had a fixed EEG
bandwidth of 0.5 to 100 Hz.

2.5. Experimental Procedure
On arrival at the laboratory, participants were informed about
the experiment protocol, given time to familiarise themselves
with the assigned robotic interaction and were prepared for
the EEG data collection according to the guidelines given in
g.tec medical engineering GmbH (2014a). The flow diagram of
the proposed experiment is given in Figure 3. Following the
standardised EEG recording protocol, EEG data were recorded
before, during and after the robot-mediated interactions.
Participants were instructed to close and open their eyes for
180 s each when EEG data were recorded before and after the
gross and fine motor tasks. In order to reduce artifacts in the
EEG data recorded with eyes opened/closed, participants were
instructed to sit still while minimising eye blinks, eyemovements,
swallowing, jaw clenching, or any other severe body movements.

In this paper, only the EEG data recorded with eyes opened
are further analysed. Participant’s feedback on their physical and
mental fatigue level before and after the tasks were obtained using
two statements with a 5-point Likert rating scale (i.e., 1 = “Not at
all fatigued,” 2 = “somewhat fatigued,” 3 = “moderately fatigued,”
4 = “very fatigued,” and 5 = “extremely fatigued”). Also, the
participant’s feedback on the task-associated physical and mental
workload was obtained using two statements with a 5-point
Likert rating scale (i.e., 1 = “Not at all demanding,” 2 = “somewhat
demanding,” 3 = “moderately demanding,” 4 = “very demanding,”
and 5 = “extremely demanding”) (Dissanayake, 2021). Moreover,
all participants performed the assigned task for 20 min.

2.6. EEG Data Analysis
This paper reports the modulation of EEG spectral features
during eyes opened states before and after the fatiguing robot-
mediated interactions. EEG features extracted from the data
recorded before the task is referred to as baseline, and the data
recorded after the task is referred to as recovery, respectively,
throughout this paper. These states can be considered to reflect
the restfulness of the participant before and after the robotic
interactions; thereby, any changes in these states could be a
reflection of fatigue. Previous studies have also compared EEG
data recorded before and after a task to identify EEG feature
modulations associated with fatigue induced by physical and
mental tasks (Ng and Raveendran, 2007; Cheng and Hsu, 2011;
Tanaka et al., 2012; Chen et al., 2013). The EEG data processing
pipeline followed for each participant during baseline and
recovery states is illustrated in Figure 4. EEG preprocessing and
feature extraction was performed offline using custom MATLAB
scripts.

Preprocessing
Firstly, the DC offset of each recording was removed by
subtracting the channel-wise mean from each data point. Then,
a Type II Chebyshev low-pass filter with a stopband frequency of
45 Hz and an order of 20 was applied to eliminate the power line
noise (50 Hz) distortions.

The EEG research community widely uses independent
component analysis (ICA) to separate and remove artifacts in
EEG signals (Makeig et al., 1996; Jung et al., 1998; Delorme
et al., 2007; Debener et al., 2010). ICA is a linear decomposition
technique used to recover a set of n unobserved independent
source signals given onlym ≥ n observed instantaneousmixtures
of these source signals. If we denote the n independent source
signals at time t by a n× 1 vector s(t) and the observed signals by
am× 1 vector x(t), the mixing model can be written as,

x(t) = As(t), (1)

where the m × n matrix A represents the unknown “mixing
matrix”. The elements in each row of A corresponds to the
contributions from each source signal to each observation (i.e.,
xi(t) =

∑n
j=1 aijsj(t) for all i = 1 tom). The objective of ICA is to

find a separating matrix, i.e., a n×mmatrixW such that

u(t) = Wx(t) (2)
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FIGURE 3 | Flow diagram of the proposed experiment.

FIGURE 4 | EEG data processing pipeline followed to preprocess raw EEG data and extract EEG spectral features of each state for each participant to perform the

statistical analysis. Dotted boxes represent the three main steps involved in the pipeline: data preprocessing, feature extraction, and statistical analysis. δrelative, θrelative,

αrelative, and βrelative indicate the relative δ, θ , α and β band powers, respectively, and (θ + α)/β, α/β, (θ + α)/(α + β), and θ/β indicate the power ratios.
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is an estimate of the original source signals. The elements in the
n × 1 vector u(t) (i.e., independent components) are identical
to the original source signals up to permutations and changes of
scales and signs (Cardoso, 1998).

The joint approximate diagonalisation of eigenmatrices
(JADE) algorithm (Cardoso and Souloumiac, 1993) was
used in this experiment to separate and remove in-band
artifacts, including eye blinking, eye movement, swallowing,
jaw clenching, and cardiac activity from the independent
components. Figure 5 illustrates the artifact removal process
using ICA for a single subject. When applying ICA to separate
EEG artifacts from brain activity patterns, it was assumed that the
signals emitted by the unobserved sources are independent, and
the number of independent sources is the same as the number
of electrodes used in the experiment (i.e., m = n = 8). The
relative projection strengths of each independent component
onto the scalp electrodes were given by the columns of the
inverse separation matrix W−1, which is an estimate of the
mixing matrix A in Equation 1. The “corrected” EEG signal
was then derived as, x̂(t) = W−1û(t), where û(t) was derived
from the matrix of activation waveforms u(t), by setting the
rows representing the artifactual components identified by visual
inspection to zero (Jung et al., 2000).

Feature Extraction
The corrected EEG signals at the two states: baseline and recovery
for each participant were segmented into epochs of 30 s length
(i.e., 7680 samples per epoch and 6 epochs in total per state).
The power spectral density for all epochs was estimated using
Welch’s averaged modified periodogram method (Welch, 1967)
with a 3 s segment length (i.e., 768 samples), 50% overlap, and
a Parzen window. Subsequently, the relative band power of δ

(1-<4 Hz), θ (4-<8 Hz), α (8–13 Hz), and β (<13–30 Hz)
(denoted by δrelative, θrelative, αrelative, and βrelative, respectively,
in this paper) for each epoch were calculated as a ratio between
the average band power of each frequency band and the total
band power (i.e., the summation of average δ, θ , α, and β band
powers). The four ratio band power measures: (θ + α)/β , α/β ,
(θ + α)/(α + β), and θ/β for each epoch were also calculated.
Finally, the average of each EEG spectral feature within the 180 s
duration (i.e., six epochs) of each state was calculated to represent
the corresponding spectral EEG feature index of the baseline and
recovery states, respectively (Dissanayake, 2021).

Statistical Analysis
Statistical analysis was carried out using the IBM SPSS
Statistics 25 software. A p-value<0.05 was considered statistically
significant, denoting a 95% confidence interval. It was of interest
to investigate whether the significant differences in EEG spectral
features caused by fatigue are localised to different electrode
locations due to the differences in the nature of the task
(fine/gross motor and distal/proximal upper limb). Normality
of the differences between EEG spectral features extracted from
baseline and recovery states were assessed using the Kolmogorov-
Smirnov test. Upon confirmation of normal distribution, two-
tailed paired-samples t-tests were performed separately on the
eight electrode locations to identify the significant differences

between the baseline and recovery states of each EEG spectral
feature for each robot-mediated interaction. The effect sizes were
expressed by the Pearsons’ correlation coefficient, r =

√

t2

(t2+df 2)
.

Multiple paired-samples t-tests were also used in previous fatigue
studies to evaluate the changes in EEG features at different brain
regions (Tanaka et al., 2012; Zhao et al., 2012; Chen et al., 2013;
Fan et al., 2015).

3. RESULTS

3.1. Modulations in EEG Spectral Features
Following the Robot-Mediated Gross
Motor Interaction With HapticMASTER
Table 2 summarises the paired-samples t-test results of the
statistically significant EEG spectral feature modulations
following the gross motor interaction with HapticMASTER.
Figure 6 shows the sample mean and standard deviation of the
substantive EEG spectral features during baseline and recovery
states. Comparison of the sub-figures shows that αrelative changed
the most due to fatigue induced by the gross motor interaction
with HapticMASTER. In Figure 6B, there is a clear increase in
the sample mean of αrelative across all electrodes, with statistically
significant differences visible on the three electrodes placed over
the contralateral motor cortex: FC3 (t(9) = -2.378, p = 0.041, r
= 0.621), C3 (t(9) = -3.148, p = 0.012, r = 0.724) and P3 (t(9)
= -2.646, p = 0.027, r = 0.661). As well as being statistically
significant, the effect of the variation in αrelative on FC3, C3, and
P3 electrodes is large. These electrodes correspond to motor
activities using the right hand; thereby, the significant increase
in αrelative reflects a decreased cortical activation, which is an
indication of fatigue. Similarly, Figures 6C,D show that fatigue
induced by the gross motor task significantly increased both
(θ + α)/β (t(9) = -2.787, p = 0.021, r = 0.681) and α/β (t(9) = -
2.403, p = 0.040, r = 0.625) on the C3 electrode. A larger effect size
was also visible on the C3 electrode for both (θ + α)/β and α/β .
These findings show that fatigue induced by gross movements
increased the low-frequency power and decreased the fast wave
activities on the C3 electrode, resulting in a significant difference
when combined. In contrast, Figure 6A indicates that there has
been a drop in δrelative following the gross movements (except on
T7). Also, a significant variation with larger effect was found on
the C3 electrode (t(9) = 2.593, p = 0.029, r = 0.654). This result
is somewhat counter-intuitive because previous studies have
shown a significant increase or no change in delta activity as
fatigue progressed; however, it is reasonable to assume that this
inconsistency may be related to the differences in experimental
protocols.There were no significant differences visible in θrelative,
βrelative, (θ + α)/(α + β), and θ/β due to fatigue induced by
the gross motor task. Overall, these results show a reduced
activation around the sensorimotor cortex due to fatigue induced
by robot-mediated gross movements. Figure 7 shows the brain
topographies of the difference between recovery and baseline
states (i.e., difference = recovery - baseline) of δrelative, αrelative,
(θ + α)/β and α/β for one participant who reported a greater
increase in physical fatigue than mental fatigue following the
gross motor task. Topographical distributions also show that the
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FIGURE 5 | Illustration of EEG artifactual components identification using ICA for one participant. The red, blue, and green rectangles correspond to cardiac activity,

eye blink, and eye movement artifacts, respectively. All data were referenced to the right earlobe (A2).
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TABLE 2 | Significant EEG spectral feature modulations and the corresponding electrode locations following the gross motor interaction with HapticMASTER.

Spectral feature Electrode location
Sample mean ± std Paired samples t-test

Direction of change

Baseline Recovery t df p-value r

δrelative C3 0.542 ± 0.109 0.476 ± 0.067 2.593 9 0.029 0.654 ↓

αrelative

FC3 0.180 ± 0.068 0.225 ± 0.069 -2.378 9 0.041 0.621 ↑

C3 0.198 ± 0.070 0.259 ± 0.095 -3.148 9 0.012 0.724 ↑

P3 0.271 ± 0.094 0.330 ± 0.154 -2.646 9 0.027 0.661 ↑

(θ+α)
β

C3 8.151 ± 4.349 8.923 ± 4.167 -2.787 9 0.021 0.681 ↑

α
β

C3 4.213 ± 2.612 4.997 ± 2.812 -2.403 9 0.040 0.625 ↑

↑ = significant increase. ↓ = significant decrease.

A B

C D

FIGURE 6 | Comparison of the sample mean and standard deviation of (A) δrelative, (B) αrelative, (C) (θ + α)/β, and (D) α/β of all participants between baseline and

recovery states for the gross motor interaction with HapticMASTER. The statistical significance is represented by an asterisk: i.e., *p < 0.05.

fatigue induced by the gross movements may have altered the
EEG activity around the left central and left parietal regions.

3.2. Modulations in EEG Spectral Features
Following the Robot-Mediated Fine Motor
Interaction With SCRIPT Passive Orthosis
Table 3 summarises the paired-samples t-test results of the
statistically significant EEG spectral feature modulations
following the fine motor interaction with SCRIPT passive
orthosis. Figure 8 shows the sample mean and standard
deviation of the substantive EEG spectral features during
baseline and recovery states. An increase of θrelative and αrelative

is visible in both Figures 8B,C on all electrodes. A significant
increase in αrelative is visible on FP1 (t = -2.871, p = 0.018, r
= 0.691) and C3 (t = -2.555, p = 0.031, r = 0.648) electrodes,
whereas the significant difference in θrelative is on the C4 electrode
(t = -3.507, p = 0.007, r = 0.760). The effect of these significant
variations in αrelative and θrelative are also of larger magnitude,
thereby suggesting that these variations are substantive findings.
In contrast, a general decrease in δrelative on all electrodes and
a significant decrease on the FP1 electrode with a larger effect
size (t = 3.066, p = 0.013, r = 0.715) can be found in Figure 8A.
No significant differences were visible in βrelative and ratio band
power measures. In general, these results show that the fatigue
induced by fine motor interactions alters not only the activities
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A B C D

FIGURE 7 | Brain topographies for the difference between recovery and baseline states (i.e., difference = recovery - baseline) of (A) δrelative, (B) αrelative, (C) (θ + α)/β,

and (D) α/β for one participant following the gross motor interaction with HapticMASTER. In each brain map, the nose is represented by the triangle on the top, and

the right hemisphere is on the right. For αrelative, (θ + α)/β, and α/β, the red-shaded areas indicate a larger increase whereas the blue-shaded areas indicate a

decrease. For δrelative, the blue-shaded areas indicate a larger decrease whereas the red-shaded areas indicate a smaller decrease.

around the sensorimotor cortex but also the frontopolar cortex.
Figure 9 shows the brain topographies of the difference between
recovery and baseline states (i.e., difference = recovery - baseline)
of the substantive EEG features for one participant who reported
a greater increase in mental fatigue than physical fatigue
following the fine motor task. Topographical distributions also
show that the variations in the EEG features around frontopolar
and central brain regions may have been caused by the fatigue
that resulted from the robot-mediated fine motor interaction.

3.3. Subjective Measures of Fatigue Level
and Workload
Most participants who performed the robot-mediated gross
motor interaction with HapticMASTER reported increased
physical fatigue following the task. Six participants showed a
greater change in physical fatigue scores than in mental fatigue
scores, and two participants showed an equal rise in both
physical and mental fatigue scores. Therefore, the subjective
ratings suggest that the grossmotor interactionmay have induced
physical fatigue. In contrast, most participants who performed
the fine motor task reported that their mental fatigue was
increased following the robotic interaction. Four participants
showed a greater change in mental fatigue scores than physical
fatigue scores, and two participants showed an equal rise in
both physical and mental fatigue scores. Therefore, the subjective
ratings suggest that the fine motor interaction, on the other
hand, may have induced mental fatigue. Furthermore, most
participants reported that the gross motor task was more
physically demanding than mentally demanding. In contrast,
most participants revealed that the fine motor task required
greater mental demand or equally physical and mental demand.
A comparison of the subjective measures of physical and mental
fatigue levels before and after the robot-mediated gross and fine
motor interactions and the physical and mental workload of the
two tasks is shown in Figure 10.

Figure 11 shows the association between the variations in
fatigue levels and the rated workload following the robot-
mediated gross and fine motor interactions. All participants

who experienced a greater increase in physical fatigue than the
change in mental fatigue following the gross motor task also
rated that the underlying physical workload of the gross motor
task was greater than the mental workload. All participants who
experienced a greater increase in mental fatigue than physical
fatigue following the fine motor task rated that the fine motor
task required a greater mental demand than the physical demand.
The gross motor task involves the movement and coordination
of proximal joints and muscles of the upper limb (shoulder and
arm) to control the robot arm between target points. The fine
motor task requires considerable attention and decision-making
skills combined with hand and finger movements to catch the fish
when it reaches the seashell. Therefore, the subjective responses
imply that the gross motor task performed with HapticMASTER
may have greatly contributed to the development of physical
fatigue due to the increased physical demand. In contrast, the
fine motor task performed with SCRIPT passive orthosis may
have mainly induced mental fatigue due to the increased mental
demand required during the task.

3.4. Association of Changes in Fatigue
Level With the Substantive EEG Feature
Modulations
Most participants who reported an increase in physical fatigue
following the robot-mediated gross motor interaction also
showed a greater increase in αrelative on FC3, C3, and P3
electrodes, (θ+α)/β and α/β on the C3 electrode in comparison
to the participants who reported no change or reduction in
physical fatigue. Similarly, a greater decrease in δrelative on the C3
electrode was also found in most participants who experienced
increased physical fatigue. Therefore, the above findings show
that the significant changes in δrelative, αrelative, (θ + α)/β and
α/β around the motor cortex are likely related to the physical
fatigue accumulated following the gross motor task. All six
participants who reported increased mental fatigue following
the robot-mediated fine motor interaction showed a decrease
in δrelative on the FP1 electrode. Five participants also showed
an increase in αrelative on FP1 and C3 electrodes, and four
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TABLE 3 | Significant EEG spectral feature modulations and the corresponding electrode locations following the fine motor interaction with SCRIPT passive orthosis.

Spectral feature Electrode location
Sample mean ± std Paired samples t-test

Direction of change

Baseline Recovery t df p-value r

δrelative FP1 0.550 ± 0.096 0.504 ± 0.106 3.066 9 0.013 0.715 ↓

θrelative C4 0.193 ± 0.033 0.226 ± 0.039 -3.507 9 0.007 0.760 ↑

αrelative FP1 0.179 ± 0.075 0.211 ± 0.104 -2.871 9 0.018 0.691 ↑

C3 0.202 ± 0.127 0.227 ± 0.117 -2.555 9 0.031 0.648 ↑

↑ = significant increase. ↓ = significant decrease.

A B

C

FIGURE 8 | Comparison of the sample mean and standard deviation of (A) δrelative, (B) θrelative, and (C) αrelative of all participants between baseline and recovery states

for the fine motor interaction with SCRIPT passive orthosis. The statistical significance is represented by an asterisk: i.e., *p < 0.05 and **p < 0.01.

participants showed an increase in θrelative on C4. Therefore,
the modulations in EEG spectral features around the prefrontal
cortex presumably reflect increased mental fatigue following the
robot-mediated finemovements. Figure 12 shows the association
between themodulations in δrelative and αrelative and the variations
in subjective measures of physical and mental fatigue levels
following the robot-mediated gross and fine motor tasks.

4. DISCUSSION

This preliminary experiment investigated cortical-related
changes associated with fatigue in upper limb robot-mediated
gross and finemotor interactions. The findings of this experiment
indicate that it is possible to monitor fatigue induced by robot-
mediated interactions using EEG spectral features, which can
have further utility for robot-mediated post-stroke therapy.

The most prominent finding was a significant increase in
the αrelative following both the robot-mediated gross and fine
motor interactions. It is known that α activity is most commonly
visible during relaxed conditions and decreased attention levels.
Also, in drowsy but wakeful states when increased efforts are
taken to maintain the level of attention and alertness, increased
α activity is visible (Klimesch, 1999). In contrast, when an
individual is in an alert state, suppression of α activity is visible.
Task-related desynchronisation, which leads to a decrease in α

activity, can be interpreted as an electrophysiological correlate
of increased activation of the cortical areas (excited neural
structures) that produce motor behaviour or process sensory or
cognitive information (Pfurtscheller et al., 1996; Pfurtscheller,
1997). Therefore, the increased αrelative following the robot-
mediated interactions may reflect decreased cortical activity and
a reduced capacity for information processing in the underlying
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A B C

FIGURE 9 | Brain topographies for the difference between recovery and baseline states (i.e., difference = recovery - baseline) of (A) δrelative, (B) θrelative, and (C) αrelative

for one participant following the fine motor interaction with SCRIPT passive orthosis. In each brain map, the nose is represented by the triangle on the top, and the

right hemisphere is on the right. The red-shaded areas indicate a larger increase whereas the blue-shaded areas indicate a larger decrease.

A B C

FIGURE 10 | Subjective measures of fatigue level and workload. (A) Comparison of the subjective measures of fatigue level before and after the gross motor

interaction with HapticMATER. (B) Comparison of the subjective measures of fatigue level before and after the fine motor interaction with SCRIPT passive orthosis. (C)

Comparison of the subjective measures of physical and mental workload following the gross and fine motor interactions.

A B

FIGURE 11 | Association between the variations in fatigue levels and the rated workload following the (A) robot-mediated gross motor interaction with

HapticMASTER and (B) robot-mediated fine motor interaction with SCRIPT passive orthosis. The “IPF” and “IMF” refers to the increase in physical and mental fatigue

scores following the robot-mediated interactions, respectively. No change refers to no increase or a decrease in both fatigue levels. The “PWL” and “MWL” refers to

the rated physical and mental workload, respectively.

cortical regions due to fatigue. This finding is in agreement
with the findings of previous fatigue studies (Eoh et al., 2005;
Barwick et al., 2012; Zhao et al., 2012; Fan et al., 2015; Zou et al.,

2015). Thus, we suggest that the observed modulations in αrelative

presumably reflect the changes in an individual’s fatigue level
following upper limb robot-mediated interactions. Furthermore,
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A

B

FIGURE 12 | Comparison of the modulations in δrelative and αrelative with the variations in fatigue levels following the (A) robot-mediated gross motor interaction with

HapticMASTER and (B) robot-mediated fine motor interaction with SCRIPT passive orthosis. The 1 represents the difference in each EEG feature following the

robot-mediated interactions (i.e., recovery - baseline). The “IPF” and “IMF” refers to the increase in physical and mental fatigue scores following the robot-mediated

interactions, respectively. No change refers to no increase or a decrease in both fatigue levels.

the above inference was also supported by the participants’
feedback on the changes in their physical and mental fatigue
levels after the assigned task; thereby suggesting that αrelative is
a reliable EEG-based fatigue index that can be used to monitor
fatigue accumulated during human-robot interactions.

Topographical differences found in the prominent EEG
spectral features indicate that the brain regions most affected
by fatigue may depend on the physical and mental workload
associated with the task and the differences in the usage of the
proximal and distal upper arm. In the gross motor interaction,
participants were instructed to move the HapticMASTER robot
arm in a linear trajectory to reach the two target points visible
in the virtual reality environment. In a visually guided reaching
task, the sensory system extracts spatial information about the
target, and amovement plan is created and executed by themotor
cortex (Sabes, 2000; Gevins and Smith, 2007). The premotor
cortex, primary somatosensory cortex, and posterior parietal
cortex integrate motor and sensory information for planning and
coordinating complex movements. Also, HapticMASTER is an
end-effector based robot, and the proximal upper limbs (arm and
shoulder) are predominantly used when moving the robot arm
between target points during the gross motor task. Therefore,
the significant rise in αrelative found at FC3, C3, and P3 electrode

locations presumably reflects the inhibition of premotor cortex,
primary somatosensory cortex, and posterior parietal cortex due
to physical fatigue accumulated during the arm reach/return
task. A previous study has also shown that the upper limb
reaching tasks performed using the HapticMASTER induced
muscle fatigue (Thacham Poyil et al., 2020a,b). Conversely, in
the fine motor task, participants were expected to perform hand
open/close gestures only when a fish was near the seashell in
the virtual environment. Therefore, the fine motor task required
more sustained attention and decision-making than the gross
motor task. Laureiro-Martínez et al. (2014) also found that a
stronger activation in the frontopolar cortex is associated with
higher decision-making efficiency. In addition, activemovements
consisting of repetitive opening and closing of the hand are
shown to activate the contralateral primary sensorimotor cortex
(Guzzetta et al., 2007). Therefore, the increased αrelative over FP1
and C3 electrodes following the repetitive finemovements appear
to reflect an altered decision-making efficiency of an individual,
in addition to the deactivation in the motor cortex associated
with fatigue. The topographical variations in αrelative were also
supported by the participants’ feedback on their fatigue level after
each interaction. The greater changes in αrelative following the
gross motor task were also associated with a greater increase
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in physical fatigue. In contrast, the greater changes in αrelative

following the fine motor task were associated with a greater
increase in mental fatigue or an equal increase in both physical
and mental fatigue levels.

It has been established in the literature that EEG activity shifts
from high frequencies toward slower waves with the progression
of fatigue; thus, the ratio between low-frequency and high-
frequency power can also be considered as a reliable measure
of fatigue (Eoh et al., 2005; Jap et al., 2009). This experiment
found significant differences only in (θ + α)/β and α/β on the
C3 electrode following the physically fatiguing gross motor task.
These findings were also supported by the participants’ feedback
on their fatigue level. Furthermore, there were no significant
differences in the power ratios due to the fine motor task.
Although the significant changes on the C3 electrode were only
visible for αrelative, a slight increase in θrelative and a decrease in
βrelative were also found after the gross motor task. Therefore,
the findings suggest that gross motor interaction increased the
low-frequency activities while suppressing the high-frequency
activities on the C3 electrode, which may have caused the
significant increase of (θ + α)/β and α/β . Eoh et al. (2005), Jap
et al. (2009), Chen et al. (2013), Fan et al. (2015) also reported a
significant rise in both (θ + α)/β and α/β with fatigue.

The suppression in δrelative following the robot-mediated
interactions is contrary to some previous studies that have
suggested a statistically significant increase or no significant
difference in δ activities due to fatigue (Lal and Craig, 2002;
Craig et al., 2012; Zhao et al., 2012). However, a non-significant
reduction in δrelative around all brain regions after a simulated
driving task was reported in Zhao et al. (2012). In this
experiment, a significant decrease in δrelative was found on the
C3 electrode following the gross motor task and on the FP1
electrode following the fine motor task. Most participants who
reported an increase in their physical fatigue level after the robot-
mediated gross motor task also have experienced a decrease
in δrelative on the C3 electrode. Similarly, all participants who
reported an increase in their mental fatigue level following
the robot-mediated fine motor task also showed a decrease
in δrelative. Therefore, the subjective measures of fatigue level
support the suppression in δrelative due to fatigue build-up
and the topographical variations found in the two tasks. The
methodological differences of the previous studies could explain
these discrepancies as these studies were based on vehicle
driving tasks, whereas our experiment was focused on gross
and fine motor tasks in a human-robot interaction scenario.
Harmony et al. (1996) proposed that increased attention to
internal processing (i.e., “internal concentration”) during mental
tasks might cause an increase in the delta activity. In order
to accurately perform the two tasks in this experiment, higher
concentration and attention levels are essential. Therefore, the
reduction in δrelative associated with the robotic interactions may
suggest deficient inhibitory control and information-processing
mechanisms. This finding, while preliminary, suggests that
fatigue may have negatively affected an individual’s attention
and internal concentration levels. Therefore, δrelative could
also be used as an EEG-based measure of fatigue in robot-
mediated interactions.

The ipsilateral primary somatosensory cortex is also shown to
increase its level of activation during prolonged sustained and
intermittent sub-maximal muscle contractions to compensate
for fatigue (Liu et al., 2003). In this experiment, a significant
change in the C4 electrode was visible only for θrelative following
the fine motor task. Theta oscillations in EEG have shown to
be prominent during cognitive processing that requires higher
mental effort and is positively related to task difficulty (Gevins
et al., 1997). Barwick et al. (2012), Cheng and Hsu (2011), and
Zhao et al. (2012) also reported an increase in θrelative due to
fatigue build-up. Therefore, the rise in θrelative on C4 may reflect
the fatigue-related changes in the ipsilateral brain activation
caused by the fine motor task.

The spatial precision of the EEG recordings taken in this
experiment was limited since the EEG data acquisition system
could only support eight electrode locations. Furthermore, only a
limited number of participants were tested, and each participant
interacted with only one robotic interface. Therefore, future
research should examine more electrode locations and consider
a cross-over study design with a higher sample size where each
participant is exposed to both fatiguing robotic interactions.

5. CONCLUSION

This paper investigates the modulations in EEG spectral features
associated with fatigue induced by robot-mediated upper limb
gross and fine motor interactions. It was found that the fatigue
induced by the gross movements mostly altered the EEG activity
around the central and parietal brain regions, whereas the
fine movements mostly altered the EEG activity around the
frontopolar and central brain regions. These regional differences
in significant EEG spectral features are most likely due to the
differences in the nature of the task (fine/gross motor and
distal/proximal upper limb) that may have differently altered
the physical and mental fatigue level of an individual. We have
shown that EEG correlates of fatigue progressed during robot-
mediated interactions are specific to the physical or cognitive
nature of the task performed using the proximal or distal upper
limb. Further studies will explore whether the specificity is due to
the difference in themotor skills considered (fine/gross motor) or
the usage of upper limbs (distal/proximal upper limb). Given that
fatigue during robot-mediated therapy can be estimated via EEG
spectral features, we believe that the findings could potentially
be used to moderate the level of fatigue during post-stroke
rehabilitation, acknowledging that stroke patients are more likely
to be fatigued than healthy individuals. Moreover, it would be
possible to derive more personalised robot-mediated post-stroke
rehabilitation regimes that would utilise the individual fatigue
levels as a tool to increase the efficacy of upper limb robot-
mediated rehabilitation.

DATA AVAILABILITY STATEMENT

The datasets presented in this article are not readily available
because ethical consent to share the data publicly alongside
publications was not sought at data collection, and therefore

Frontiers in Neurorobotics | www.frontiersin.org 14 January 2022 | Volume 15 | Article 788494

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Dissanayake et al. Fatigue in Robot-Mediated Interactions

it is not possible to share the data. Requests to access
the datasets should be directed to Farshid Amirabdollahian,
f.amirabdollahian2@herts.ac.uk.

ETHICS STATEMENT

The studies involving human participants were reviewed and
approved by Science and Technology Ethics Committee with
Delegated Authority of the University of Hertfordshire. The
patients/participants provided their written informed consent to
participate in this study.

AUTHOR CONTRIBUTIONS

UD carried out the data collection, analysis, and wrote the first
draft of the manuscript. FA and VS obtained the research funding
and supervised the research. All authors contributed to the

conception and design of the experiment, manuscript revision,
and approved the submitted version.

FUNDING

This work was supported by the Ph.D studentship
awarded to UD from the University of Hertfordshire,
United Kingdom.

ACKNOWLEDGMENTS

This experiment was conducted as part of the Ph.D programme
pursued by UD at the University of Hertfordshire, United
Kingdom. The authors would like to thank all the participants
who contributed their time and effort to this experiment. A
preprint of this paper is available on bioRxiv (Dissanayake et al.,
2021).

REFERENCES

Alderman, R. B. (1965). Influence of local fatigue on speed and accuracy in motor

learning. Res. Quart. Amer. Assoc. Health Phys. Educ. Recreat. 36, 131–140.

doi: 10.1080/10671188.1965.10614670

American Clinical Neurophysiology Society. (2006). Guideline 5: guidelines for

standard electrode position nomenclature. J. Clin. Neurophysiol. 23, 107–110.

doi: 10.1097/00004691-200604000-00006

Amirabdollahian, F., Ates, S., Basteris, A., Cesario, A., Buurke, J.,

Hermens, H., et al. (2014). Design, development and deployment of

a hand/wrist exoskeleton for home-based rehabilitation after stroke

- SCRIPT project. Robotica 32, 1331–1346. doi: 10.1017/S02635747140

02288

Amirabdollahian, F., Loureiro, R., Gradwell, E., Collin, C., Harwin, W., and

Johnson, G. (2007). Multivariate analysis of the Fugl-Meyer outcome measures

assessing the effectiveness of GENTLE/S robot-mediated stroke therapy. J.

NeuroEng. Rehabil. 4, 4. doi: 10.1186/1743-0003-4-4

Bailey, S. P., Hall, E. E., Folger, S. E., and Miller, P. C. (2008). Changes in EEG

during graded exercise on a recumbent cycle ergometer. J. Sports Sci. Med. 7,

505–11.

Barwick, F., Arnett, P., and Slobounov, S. (2012). EEG correlates of fatigue during

administration of a neuropsychological test battery. Clin. Neurophysiol. 123,

278–284. doi: 10.1016/j.clinph.2011.06.027

Baumeister, J., Reinecke, K., Schubert, M., Schade, J., and Weiss, M. (2012). Effects

of induced fatigue on brain activity during sensorimotor control. Eur. J. Appl.

Physiol. 112, 2475–2482. doi: 10.1007/s00421-011-2215-6

Borghini, G., Astolfi, L., Vecchiato, G., Mattia, D., and Babiloni, F. (2014).

Measuring neurophysiological signals in aircraft pilots and car drivers for the

assessment of mental workload, fatigue and drowsiness. Neurosci. Biobehav.

Rev. 44, 58–75. doi: 10.1016/j.neubiorev.2012.10.003

Branscheidt, M., Kassavetis, P., Anaya, M., Rogers, D., Huang, H. D., Lindquist,

M. A., et al. (2019). Fatigue induces long-lasting detrimental changes in motor-

skill learning. eLife 8, e40578. doi: 10.7554/eLife.40578

Caldwell, J. A., Hall, K. K., and Erickson, B. S. (2002). EEG data collected from

helicopter pilots in flight are sufficiently sensitive to detect increased

fatigue from sleep deprivation. Int. J. Aviation Psychol. 12, 19–32.

doi: 10.1207/S15327108IJAP1201_3

Cardoso, J. F. (1998). Blind signal separation: statistical principles. Proc. IEEE 86,

2009–2025. doi: 10.1109/5.720250

Cardoso, J. F., and Souloumiac, A. (1993). “Blind beamforming for non-gaussian

signals,” in IEE Proceedings F (Radar and Signal Processing), Vol. 140 (IET),

362–370.

Carron, A. (1972). Motor performance and learning under physical fatigue. Med.

Sci. Sports 4, 101–106.

Carron, A. V. (1969). Physical fatigue andmotor learning. Res. Quart. Amer. Assoc.

Health Phys. Educ. Recreat. 40, 682–686. doi: 10.1080/10671188.1969.10614902

Chemuturi, R., Amirabdollahian, F., and Dautenhahn, K. (2013). Adaptive

training algorithm for robot-assisted upper-arm rehabilitation, applicable to

individualised and therapeutic human-robot interaction. J. Neuroeng. Rehabil.

10, 102. doi: 10.1186/1743-0003-10-102

Chen, C., Li, K., Wu, Q., Wang, H., Qian, Z., and Sudlow, G. (2013). EEG-based

detection and evaluation of fatigue caused by watching 3DTV. Displays 34,

81–88. doi: 10.1016/j.displa.2013.01.002

Cheng, S. Y., and Hsu, H. T. (2011). “Mental fatigue measurement using EEG,” in

Risk Management Trends, ed G. Nota (IntechOpen). doi: 10.5772/16376

Cotten, D. J., Thomas, J. R., Spieth, W. R., and Biasiotto, J. (1972). Temporary

fatigue effects in a gross motor skill. J. Motor Behav. 4, 217–222.

Cowley, J. C., and Gates, D. H. (2017). Proximal and distal muscle fatigue

differentially affect movement coordination. PLoS ONE 12, e0172835.

doi: 10.1371/journal.pone.0172835

Craig, A., Tran, Y., Wijesuriya, N., and Nguyen, H. (2012). Regional brain

wave activity changes associated with fatigue. Psychophysiology 49, 574–582.

doi: 10.1111/j.1469-8986.2011.01329.x

Debener, S., Thorne, J., Schneider, T. R., and Viola, F. C. (2010). “Using

ICA for the analysis of multi-channel EEG data,” in Simultaneous EEG

and fMRI: Recording, Analysis, and Application, eds M. Ullsperger,

and D. Stefan (New York, NY: Oxford University Press), 121–133.

doi: 10.1093/acprof:oso/9780195372731.003.0008

Delorme, A., Sejnowski, T., and Makeig, S. (2007). Enhanced detection of artifacts

in EEG data using higher-order statistics and independent component analysis.

Neuroimage 34, 1443–1449. doi: 10.1016/j.neuroimage.2006.11.004

Dissanayake, U. C. (2021). Assessment of Fatigue in Robot-Mediated Upper Limb

Interactions Using EEG. (Hatfield: University of Hertfordshire).

Dissanayake, U. C., Steuber, V., and Amirabdollahian, F. (2021). EEG spectral

featuremodulations associated with fatigue in robot-mediated upper limb gross

motor and fine motor interactions. bioRxiv. doi: 10.1101/2021.04.22.440968

Eoh, H. J., Chung, M. K., and Kim, S. H. (2005). Electroencephalographic study of

drowsiness in simulated driving with sleep deprivation. Int. J. Ind. Ergon. 35,

307–320. doi: 10.1016/j.ergon.2004.09.006

Fan, X., Zhou, Q., Liu, Z., and Xie, F. (2015). Electroencephalogram assessment

of mental fatigue in visual search. Bio Med. Mater. Eng. 26, S1455–S1463.

doi: 10.3233/BME-151444

Foong, R., Ang, K. K., Quek, C., Guan, C., Phua, K. S., Kuah, C. W. K., et al. (2019).

Assessment of the efficacy of EEG-based MI-BCI with visual feedback and EEG

correlates of mental fatigue for upper-limb stroke rehabilitation. IEEE Trans.

Biomed. Eng. 67, 786–795. doi: 10.1109/TBME.2019.2921198

g.tec medical engineering GmbH (2014a). g.GAMMACap2 EEG sensor cap:

Instructions for use V2.14.00. Austria: g.tec medical engineering GmbH.

Frontiers in Neurorobotics | www.frontiersin.org 15 January 2022 | Volume 15 | Article 788494

mailto:f.amirabdollahian2@herts.ac.uk
https://doi.org/10.1080/10671188.1965.10614670
https://doi.org/10.1097/00004691-200604000-00006
https://doi.org/10.1017/S0263574714002288
https://doi.org/10.1186/1743-0003-4-4
https://doi.org/10.1016/j.clinph.2011.06.027
https://doi.org/10.1007/s00421-011-2215-6
https://doi.org/10.1016/j.neubiorev.2012.10.003
https://doi.org/10.7554/eLife.40578
https://doi.org/10.1207/S15327108IJAP1201_3
https://doi.org/10.1109/5.720250
https://doi.org/10.1080/10671188.1969.10614902
https://doi.org/10.1186/1743-0003-10-102
https://doi.org/10.1016/j.displa.2013.01.002
https://doi.org/10.5772/16376
https://doi.org/10.1371/journal.pone.0172835
https://doi.org/10.1111/j.1469-8986.2011.01329.x
https://doi.org/10.1093/acprof:oso/9780195372731.003.0008
https://doi.org/10.1016/j.neuroimage.2006.11.004
https://doi.org/10.1101/2021.04.22.440968
https://doi.org/10.1016/j.ergon.2004.09.006
https://doi.org/10.3233/BME-151444
https://doi.org/10.1109/TBME.2019.2921198
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Dissanayake et al. Fatigue in Robot-Mediated Interactions

g.tec medical engineering GmbH (2014b). g.GAMMAsys Active Electrode System:

Instructions for use V2.14.01. Austria: g.tec medical engineering GmbH.

Gevins, A., and Smith, M. E. (2007). “Electroencephalography (EEG) in

neuroergonomics,” inNeuroergonomics: The brain atWork, eds R. Parasuraman

and M. Rizzo (New York, NY: Oxford University Press), 15–31.

Gevins, A., Smith, M. E., McEvoy, L., and Yu, D. (1997). High-resolution

EEG mapping of cortical activation related to working memory: effects of

task difficulty, type of processing, and practice. Cereb. Cortex 7, 374–385.

doi: 10.1093/cercor/7.4.374

Gibson, H., and Edwards, R. (1985). Muscular exercise and fatigue. Sports Med. 2,

120–132. doi: 10.2165/00007256-198502020-00004

Godwin, M. A., and Schmidt, R. A. (1971). Muscular fatigue and learning a discrete

motor skill. Res. Quart. Amer. Assoc. Health Phys. Educ. Recreat. 42, 374–382.

doi: 10.1080/10671188.1971.10615084

Guzzetta, A., Staudt, M., Petacchi, E., Ehlers, J., Erb, M., Wilke, M., et al.

(2007). Brain representation of active and passive hand movements in children.

Pediatric Res. 61, 485–490. doi: 10.1203/pdr.0b013e3180332c2e

Harmony, T., Fernández, T., Silva, J., Bernal, J., Díaz-Comas, L., Reyes, A., et al.

(1996). EEG delta activity: an indicator of attention to internal processing

during performance of mental tasks. Int. J. Psychophysiol. 24, 161–171.

doi: 10.1016/S0167-8760(96)00053-0

Jap, B. T., Lal, S., Fischer, P., and Bekiaris, E. (2009). Using EEG spectral

components to assess algorithms for detecting fatigue. Exp. Syst. Appl. 36,

2352–2359. doi: 10.1016/j.eswa.2007.12.043

Jung, T.P., Makeig, S., Humphries, C., Lee, T.W., Mckeown, M. J., Iragui, V., et al.

(2000). Removing electroencephalographic artifacts by blind source separation.

Psychophysiology 37, 163–178. doi: 10.1111/1469-8986.3720163

Jung, T. P., Humphries, C., Lee, T. W., Makeig, S., McKeown, M. J., Iragui, V.,

et al. (1998). “Extended ICA removes artifacts from electroencephalographic

recordings,” in Advances in Neural Information Processing Systems (Cambridge,

MA: MIT Press), 894–900.

Käthner, I., Wriessnegger, S. C., Müller-Putz, G. R., Kübler, A., and Halder, S.

(2014). Effects of mental workload and fatigue on the P300, alpha and theta

band power during operation of an ERP (P300) brain-computer interface. Biol.

Psychol. 102, 118–129. doi: 10.1016/j.biopsycho.2014.07.014

Klimesch, W. (1999). EEG alpha and theta oscillations reflect cognitive and

memory performance: a review and analysis. Brain Res. Rev. 29, 169–195.

doi: 10.1016/S0165-0173(98)00056-3

Lal, S. K., and Craig, A. (2002). Driver fatigue: electroencephalography

and psychological assessment. Psychophysiology 39, 313–321.

doi: 10.1017/S0048577201393095

Lal, S. K. L., and Craig, A. (2001). A critical review of the psychophysiology of

driver fatigue. Biol. Psychol. 55, 173–194. doi: 10.1016/S0301-0511(00)00085-5

Laureiro-Martínez, D., Canessa, N., Brusoni, S., Zollo, M., Hare, T., Alemanno,

F., et al. (2014). Frontopolar cortex and decision-making efficiency:

comparing brain activity of experts with different professional background

during an exploration-exploitation task. Front. Human Neurosci. 7:927.

doi: 10.3389/fnhum.2013.00927

Lerdal, A., Bakken, L. N., Kouwenhoven, S. E., Pedersen, G., Kirkevold, M., Finset,

A., et al. (2009). Poststroke fatigue - a review. J. Pain Symptom Manage. 38,

928–949. doi: 10.1016/j.jpainsymman.2009.04.028

Liu, J. Z., Shan, Z. Y., Zhang, L. D., Sahgal, V., Brown, R. W., and Yue, G. H.

(2003). Human brain activation during sustained and intermittent submaximal

fatigue muscle contractions: an fMRI study. J. Neurophysiol. 90, 300–312.

doi: 10.1152/jn.00821.2002

Lorist, M. M., Boksem, M. A., and Ridderinkhof, K. R. (2005). Impaired cognitive

control and reduced cingulate activity during mental fatigue. Cogn. Brain Res.

24, 199–205. doi: 10.1016/j.cogbrainres.2005.01.018

Makeig, S., Bell, A. J., Jung, T. P., and Sejnowski, T. J. (1996). “Independent

component analysis of electroencephalographic data,” in Advances in Neural

Information Processing Systems (Cambridge, MA: MIT Press), 145–151.

Marcora, S. M., Staiano, W., and Manning, V. (2009). Mental fatigue

impairs physical performance in humans. J. Appl. Physiol. 106, 857–864.

doi: 10.1152/japplphysiol.91324.2008

Massar, S. A., Wester, A. E., Volkerts, E. R., and Kenemans, J. L. (2010).

Manipulation specific effects of mental fatigue: evidence from novelty

processing and simulated driving. Psychophysiology 47, 1119–1126.

doi: 10.1111/j.1469-8986.2010.01028.x

Mehta, R. K., and Parasuraman, R. (2014). Effects of mental fatigue on the

development of physical fatigue: a neuroergonomic approach.Hum. Factors 56,

645–656. doi: 10.1177/0018720813507279

Ng, S. C., and Raveendran, P. (2007). “EEG peak alpha frequency as an indicator for

physical fatigue,” in 11th Mediterranean Conference on Medical and Biomedical

Engineering and Computing 2007, (Berlin: Springer), 517–520.

Pfurtscheller, G. (1997). EEG event-related desynchronization (ERD) and

synchronization (ERS). Electroencephalograph. Clin. Neurophysiol. 1, 26.

Pfurtscheller, G., Stancak, A. Jr., and Neuper, C. (1996). Event-related

synchronization (ERS) in the alpha band - an electrophysiological

correlate of cortical idling: a review. Int. J. Psychophysiol. 24, 39–46.

doi: 10.1016/S0167-8760(96)00066-9

Pinegger, A., Wriessnegger, S. C., Faller, J., and Müller-Putz, G. R. (2016).

Evaluation of different EEG acquisition systems concerning their suitability

for building a brain-computer interface: case studies. Front. Neurosci. 10:441.

doi: 10.3389/fnins.2016.00441

Prasad, G., Herman, P., Coyle, D.,McDonough, S., and Crosbie, J. (2010). Applying

a brain-computer interface to support motor imagery practice in people with

stroke for upper limb recovery: a feasibility study. J. Neuroeng. Rehabil. 7, 60.

doi: 10.1186/1743-0003-7-60

Sabes, P. N. (2000). The planning and control of reaching movements. Curr. Opin.

Neurobiol. 10, 740–746. doi: 10.1016/S0959-4388(00)00149-5

Staub, F., and Bogousslavsky, J. (2001). Fatigue after stroke: a major but neglected

issue. Cerebrovascul. Dis. 12, 75–81. doi: 10.1159/000047685

Sterr, A., and Furlan, L. (2015). A case to be made: theoretical and empirical

arguments for the need to consider fatigue in post-stroke motor rehabilitation.

Neural Regener. Res. 10, 1195–1197. doi: 10.4103/1673-5374.162689

Tanaka, M., Shigihara, Y., Ishii, A., Funakura, M., Kanai, E., and

Watanabe, Y. (2012). Effect of mental fatigue on the central nervous

system: an electroencephalography study. Behav. Brain Funct. 8, 48.

doi: 10.1186/1744-9081-8-48

Thacham Poyil, A., Steuber, V., and Amirabdollahian, F. (2020a). Adaptive robot

mediated upper limb training using electromyogram-based muscle fatigue

indicators. PLoS ONE 15, e0233545. doi: 10.1371/journal.pone.0233545

Thacham Poyil, A. T., Steuber, V., and Amirabdollahian, F. (2020b). Influence

of muscle fatigue on electromyogram - kinematic correlation during

robot-assisted upper limb training. J. Rehabil. Assist. Technol. Eng. 7,

2055668320903014. doi: 10.1177/2055668320903014

Thomas, J. R., Cotten, D. J., Spieth, W. R., and Abraham, N. L. (1975). Effects of

fatigue on stabilometer performance and learning of males and females. Med.

Sci. Sports 7, 203–206. doi: 10.1249/00005768-197500730-00018

Tran, Y., Craig, A., Craig, R., Chai, R., and Nguyen, H. (2020). The influence

of mental fatigue on brain activity: evidence from a systematic review with

meta-analyses. Psychophysiology 57, e13554. doi: 10.1111/psyp.13554

Tran, Y., Wijesuryia, N., Thuraisingham, R. A., Craig, A., and Nguyen,

H. T. (2008). “Increase in regularity and decrease in variability seen in

electroencephalography (EEG) signals from alert to fatigue during a driving

simulated task,” in 2008 30th Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. (IEEE)

(Vancouver), 1096–1099.

Trejo, L. J., Kubitz, K., Rosipal, R., Kochavi, R. L., and Montgomery, L. D. (2015).

EEG-based estimation and classification of mental fatigue. Psychology 6, 572.

doi: 10.4236/psych.2015.65055

Van Cutsem, J., Marcora, S., De Pauw, K., Bailey, S., Meeusen, R., and Roelands,

B. (2017). The effects of mental fatigue on physical performance: a systematic

review. Sports Med. 47, 1569–1588. doi: 10.1007/s40279-016-0672-0

Wang, Y., Cao, L., Hao, D., Rong, Y., Yang, L., Zhang, S., et al. (2017). Effects of

force load, muscle fatigue and extremely low frequency magnetic stimulation

on EEG signals during side arm lateral raise task. Physiol. Meas. 38, 745.

doi: 10.1088/1361-6579/aa6b4b

Welch, P. (1967). The use of fast fourier transform for the estimation of power

spectra: a method based on time averaging over short, modified periodograms.

IEEE Trans. Audio Electroacoust. 15, 70–73. doi: 10.1109/TAU.1967.1161901

Williams, J., and Singer, R. N. (1975). Muscular fatigue and the learning

and performance of a motor control task. J. Motor Behav. 7, 265–269.

doi: 10.1080/00222895.1975.10735044

Xu, R., Zhang, C., He, F., Zhao, X., Qi, H., Zhou, P., et al. (2018). How

physical activities affect mental fatigue based on EEG energy, connectivity, and

complexity. Front. Neurol. 9:915. doi: 10.3389/fneur.2018.00915

Frontiers in Neurorobotics | www.frontiersin.org 16 January 2022 | Volume 15 | Article 788494

https://doi.org/10.1093/cercor/7.4.374
https://doi.org/10.2165/00007256-198502020-00004
https://doi.org/10.1080/10671188.1971.10615084
https://doi.org/10.1203/pdr.0b013e3180332c2e
https://doi.org/10.1016/S0167-8760(96)00053-0
https://doi.org/10.1016/j.eswa.2007.12.043
https://doi.org/10.1111/1469-8986.3720163
https://doi.org/10.1016/j.biopsycho.2014.07.014
https://doi.org/10.1016/S0165-0173(98)00056-3
https://doi.org/10.1017/S0048577201393095
https://doi.org/10.1016/S0301-0511(00)00085-5
https://doi.org/10.3389/fnhum.2013.00927
https://doi.org/10.1016/j.jpainsymman.2009.04.028
https://doi.org/10.1152/jn.00821.2002
https://doi.org/10.1016/j.cogbrainres.2005.01.018
https://doi.org/10.1152/japplphysiol.91324.2008
https://doi.org/10.1111/j.1469-8986.2010.01028.x
https://doi.org/10.1177/0018720813507279
https://doi.org/10.1016/S0167-8760(96)00066-9
https://doi.org/10.3389/fnins.2016.00441
https://doi.org/10.1186/1743-0003-7-60
https://doi.org/10.1016/S0959-4388(00)00149-5
https://doi.org/10.1159/000047685
https://doi.org/10.4103/1673-5374.162689
https://doi.org/10.1186/1744-9081-8-48
https://doi.org/10.1371/journal.pone.0233545
https://doi.org/10.1177/2055668320903014
https://doi.org/10.1249/00005768-197500730-00018
https://doi.org/10.1111/psyp.13554
https://doi.org/10.4236/psych.2015.65055
https://doi.org/10.1007/s40279-016-0672-0
https://doi.org/10.1088/1361-6579/aa6b4b
https://doi.org/10.1109/TAU.1967.1161901
https://doi.org/10.1080/00222895.1975.10735044
https://doi.org/10.3389/fneur.2018.00915
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Dissanayake et al. Fatigue in Robot-Mediated Interactions

Yao, B., Liu, J. Z., Brown, R. W., Sahgal, V., and Yue, G. H. (2009).

Nonlinear features of surface EEG showing systematic brain signal

adaptations with muscle force and fatigue. Brain Res. 1272, 89–98.

doi: 10.1016/j.brainres.2009.03.042

Zhao, C., Zhao, M., Liu, J., and Zheng, C. (2012). Electroencephalogram and

electrocardiograph assessment of mental fatigue in a driving simulator.

Accident Anal. Prevent. 45, 83–90. doi: 10.1016/j.aap.2011.11.019

Zou, B., Liu, Y., Guo, M., and Wang, Y. (2015). EEG-based assessment of

stereoscopic 3D visual fatigue caused by vergence-accommodation conflict. J.

Display Technol. 11, 1076–1083. doi: 10.1109/JDT.2015.2451087

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations, or those of

the publisher, the editors and the reviewers. Any product that may be evaluated in

this article, or claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Copyright © 2022 Dissanayake, Steuber and Amirabdollahian. This is an open-access

article distributed under the terms of the Creative Commons Attribution License (CC

BY). The use, distribution or reproduction in other forums is permitted, provided

the original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Neurorobotics | www.frontiersin.org 17 January 2022 | Volume 15 | Article 788494

https://doi.org/10.1016/j.brainres.2009.03.042
https://doi.org/10.1016/j.aap.2011.11.019
https://doi.org/10.1109/JDT.2015.2451087
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

	EEG Spectral Feature Modulations Associated With Fatigue in Robot-Mediated Upper Limb Gross and Fine Motor Interactions
	1. Introduction
	2. Materials and Methods
	2.1. Ethical Approval
	2.2. Participants
	2.3. Fatigue Inducing Robot-Mediated Interactions
	2.4. EEG Data Acquisition
	2.5. Experimental Procedure
	2.6. EEG Data Analysis
	Preprocessing
	Feature Extraction
	Statistical Analysis


	3. Results
	3.1. Modulations in EEG Spectral Features Following the Robot-Mediated Gross Motor Interaction With HapticMASTER
	3.2. Modulations in EEG Spectral Features Following the Robot-Mediated Fine Motor Interaction With SCRIPT Passive Orthosis
	3.3. Subjective Measures of Fatigue Level and Workload
	3.4. Association of Changes in Fatigue Level With the Substantive EEG Feature Modulations

	4. Discussion
	5. Conclusion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Acknowledgments
	References


