12 research outputs found

    The Hepatitis B Virus Large Surface Protein (LHBs) Is a Transcriptional Activator

    Get PDF
    AbstractIt has been shown that a C-terminally truncated form of the middle-sized hepatitis B virus (HBV) surface protein (MHBst) functions as a transcriptional activator. This function is dependent on the cytosolic orientation of the N-terminal PreS2 domain of MHBst, but in the case of wild-type MHBs, the PreS2 domain is cotranslationally translocated into the ER lumen. Recent reports demonstrated that the PreS2 domain of the large HBV surface protein (LHBs) initially remains on the cytosolic side of the ER membrane after translation. Therefore, the question arose as to whether the LHBs protein exhibits the same transcriptional activator function as MHBst. We show that LHBs, like MHBst, is indeed able to activate a variety of promoter elements. There is evidence for a PKC-dependent activation of AP-1 and NF-κB by LHBs. Downstream of the PKC the functionality of c-Raf-1 kinase is a prerequisite for LHBs-dependent activation of AP-1 and NF-κB since inhibition of c-Raf-1 kinase abolishes LHBs-dependent transcriptional activation of AP-1 and NF-κB

    Functional Surfaces of the Hepatitis B Virus Capsidâ–¿

    No full text
    The hepatitis B virus (HBV) core protein (CP) forms the shell of an icosahedral nucleocapsid. In a former work, we identified 11 amino acid residues of CP exposed on the capsid surface by an alanine mutation scan as being important for capsid envelopment. We now introduced several other amino acids at six of these positions and found that almost all 27 tested point mutations at S17, K96, and I126 reproduced the phenotype of the alanine mutation (with only two exceptions): the formation of nucleocapsids and of the viral DNA genome was wild type, but capsid envelopment and virion release were strongly inhibited. This indicates that these side chains have a very specific function during nucleocapsid envelopment. We also identified several CP point mutations (e.g., F122V/S/Y and R127D/G) allowing the formation of capsids but preventing the packaging of pregenomic RNA. The envelopment of such mutant capsids was blocked. Apparently, these CP mutations hampered the recognition/packaging of the pregenome-P-protein complex by CP, a process which is still barely understood, and the mutant capsids devoid of HBV-specific nucleic acid did not express the capsid maturation signal required for envelopment

    Hepatitis B Virus Particle Formation in the Absence of Pregenomic RNA and Reverse Transcriptase

    No full text
    Cytoplasmic hepatitis B virus (HBV) capsids are not enveloped and secreted unless the packaged RNA pregenome is reverse transcribed. The expression of the capsid protein C, together with envelope proteins in the absence of pregenomic RNA, produced normal amounts of intracellular capsids, but the secretion of virion-like particles was greatly reduced. The I97L C protein mutant, allowing immature nucleocapsid envelopment in the background of an HBV genome, did not promote the envelopment of capsids lacking a pregenome, suggesting that this mutation is not sufficient to induce secretion competence independently of the pregenome

    Determination of the Minimal Distance between the Matrix and Transmembrane Domains of the Large Hepatitis B Virus Envelope Protein

    No full text
    The cytosolic matrix domain (MD) located between amino acids (aa) 103 and 124 of the large hepatitis B virus envelope protein L is essential for virion formation. We reduced the distance between MD and the transmembrane domain (TD; aa 254 to 272) by deletions starting at aa 132. Six mutants with deletions of up to aa 234 were wild type, and four mutants with slightly larger deletions were blocked with respect to virion morphogenesis. Thus, the minimal distance between MD and TD was around 26 aa. This spacer might be required by MD to reach contact sites on the capsid

    Two Potentially Important Elements of the Hepatitis B Virus Large Envelope Protein Are Dispensable for the Infectivity of Hepatitis Delta Virus

    No full text
    Previous studies have attempted to clarify the roles of the pre-S1 and pre-S2 domains of the large envelope protein of hepatitis B virus (HBV) in attachment and entry into susceptible cells. Difficulties arise in that these domains contain regions involved in the nucleocapsid assembly of HBV and overlapping with the coding regions of the viral polymerase and RNA sequences required for reverse transcription. Such difficulties can be circumvented with hepatitis delta virus (HDV), which needs the HBV large envelope protein only for infectivity. Thus, mutated HBV envelope proteins were examined for their effects on HDV infectivity. Changing the C-terminal region of pre-S1 critical for HBV assembly allowed the envelopment of HDV and had no effect on infectivity in primary human hepatocytes. Similarly, a deletion of the 12 amino acids of a putative translocation motif (TLM) in pre-S2 had no effect. Thus, these two regions are not necessary for HDV infectivity and, by inference, are not needed for HBV attachment and entry into susceptible cells
    corecore