2 research outputs found

    Nonionic Double and Triple Network Hydrogels of High Mechanical Strength

    No full text
    Among the hydrogels prepared in recent years, double network (DN) hydrogels exhibit the highest compression strength, toughness, and fracture energies. However, synthesis of DN hydrogels with extraordinary mechanical properties is limited to polyelectrolyte networks, which hinders their widespread applications. Herein, we prepared nonionic DN and triple network (TN) hydrogels based on polyacrylamide (PAAm) and poly­(<i>N,N</i>-dimethylacrylamide) (PDMA) with a high mechanical strength by sequential polymerization reactions. The TN approach is based on the decrease of the translational entropy of the second monomer upon its polymerization in the first network, so that additional solvent (third monomer) can enter into DN hydrogel to assume its new thermodynamic equilibrium. The first network of TN hydrogels comprises chemically cross-linked PAAm or PDMA while the second and third networks are linear polymers. To increase the degree of inhomogeneity of the first network hydrogel, an oligomeric ethylene glycol dimethacrylate was used as a cross-linker in the gel preparation. Depending on the concentration of the first network cross-linker and on the molar ratio of the second and third to the first network units, TN hydrogels contain 89–92% water and exhibit high compressive fracture stresses (up to 19 MPa) and compressive moduli (up to 1.9 MPa)

    Metal-Enhanced Fluorescent Carbon Quantum Dots via One-Pot Solid State Synthesis for Cell Imaging

    No full text
    In this study, a facile one-pot solid-state synthesis method is developed to shed light on the metal-enhanced fluorescence (MEF) effect in carbon quantum dots (CQDs) and gold nanoparticles (AuNPs) hybrid materials. This is one of the few studies on the solid-state synthesis of N-doped CQDs/gold hybrid nanomaterials. We have conducted various sets of experiments to reveal the role of individual reagents during the nucleation and growth of nanoparticles. We have demonstrated that the addition of a small amount of gold salt illustrates a paramount effect (103-fold) in photoluminescence intensity. This effect is ascribed to MEF, which is caused due to interactions between the excited-state fluorophores and the free surface electrons of metal nanoparticles. It is interesting to note that a further increase of gold yields fluorescence quenching due to a large number of formed AuNPs causing fluorescence resonance energy transfer. By adjusting the volume ratio of gold salt and CD precursors, it is possible to obtain the CQDs–AuNPs hybrid with the highest fluorescence, which produces extensive visible light under 460 nm excitation. Synthesized materials have been successfully used for imaging human dermal fibroblasts and A549 lung epithelial cells. The dose-dependent cytotoxicity studies reveal that the hybrid structures do not have cytotoxicity
    corecore