12 research outputs found

    Discovery of DNA methylation markers in cervical cancer using relaxation ranking

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To discover cancer specific DNA methylation markers, large-scale screening methods are widely used. The pharmacological unmasking expression microarray approach is an elegant method to enrich for genes that are silenced and re-expressed during functional reversal of DNA methylation upon treatment with demethylation agents. However, such experiments are performed in <it>in vitro </it>(cancer) cell lines, mostly with poor relevance when extrapolating to primary cancers. To overcome this problem, we incorporated data from primary cancer samples in the experimental design. A strategy to combine and rank data from these different data sources is essential to minimize the experimental work in the validation steps.</p> <p>Aim</p> <p>To apply a new relaxation ranking algorithm to enrich DNA methylation markers in cervical cancer.</p> <p>Results</p> <p>The application of a new sorting methodology allowed us to sort high-throughput microarray data from both cervical cancer cell lines and primary cervical cancer samples. The performance of the sorting was analyzed <it>in silico</it>. Pathway and gene ontology analysis was performed on the top-selection and gives a strong indication that the ranking methodology is able to enrich towards genes that might be methylated. Terms like regulation of progression through cell cycle, positive regulation of programmed cell death as well as organ development and embryonic development are overrepresented. Combined with the highly enriched number of imprinted and X-chromosome located genes, and increased prevalence of known methylation markers selected from cervical (the highest-ranking known gene is <it>CCNA1</it>) as well as from other cancer types, the use of the ranking algorithm seems to be powerful in enriching towards methylated genes.</p> <p>Verification of the DNA methylation state of the 10 highest-ranking genes revealed that 7/9 (78%) gene promoters showed DNA methylation in cervical carcinomas. Of these 7 genes, 3 (<it>SST</it>, <it>HTRA3 </it>and <it>NPTX1</it>) are not methylated in normal cervix tissue.</p> <p>Conclusion</p> <p>The application of this new relaxation ranking methodology allowed us to significantly enrich towards methylation genes in cancer. This enrichment is both shown <it>in silico </it>and by experimental validation, and revealed novel methylation markers as proof-of-concept that might be useful in early cancer detection in cervical scrapings.</p

    HSPA6 is an ulcerative colitis susceptibility factor that is induced by cigarette smoke and protects intestinal epithelial cells by stabilizing anti-apoptotic Bcl-XL

    No full text
    BACKGROUND: Cigarette smoking ameliorates ulcerative colitis (UC) and aggravates Crohn's disease (CD). Cigarette smoke suppresses inflammation-induced apoptosis in intestinal epithelial cells (DLD-1), which may explain its protective effect in UC. Here, we performed transcriptome profiling of cigarette smoke extract (CSE)-exposed DLD-1 and Jurkat cells (T-lymphocytes) and related this to UC susceptibility genes with protective functions in the intestinal epithelium. METHODS: CSE-regulated genes in DLD-1 and Jurkat cells were identified by Illumina microarrays and compared to genes in UC susceptibility loci. Colon biopsies were analyzed by immunohistochemistry for cell-specific expression of HSPA6. CSE-induced gene expression was analyzed by Q-PCR, Western blotting and immunofluorescence microscopy. Protein (HSPA6/Bcl-XL) interactions were analyzed by immunoprecipitation. RESULTS: CSE changed the expression of 536 and 2560 genes in DLD-1 and Jurkat cells, respectively. The "response to unfolded protein" was one of the most significantly affected gene sets with prominent induction (20.3-fold) of heat shock protein A6 (HSPA6). Six CSE-induced genes in DLD-1 cells were located in UC-susceptibility loci, including HSPA6 (rs1801274). HSPA6 is highly expressed in the human colonic epithelium. CSE caused a dose-dependent strong (>100-fold at 30% CSE for 6h), but transient induction of HSPA6 mRNA and protein in DLD-1 cells. HSPA6 co-immune precipitated with anti-apoptotic Bcl-XL, protein levels of which were increased while mRNA levels were unchanged. CONCLUSIONS: HSPA6 is a cigarette smoke-induced UC-susceptibility gene. The HSPA6 risk locus is associated with decreased HSPA6 expression. HSPA6 provides epithelial protection by stabilizing anti-apoptotic Bcl-XL, thereby contributing to the beneficial effect of cigarette smoking in UC

    Differential Desensitization of Homozygous Haplotypes of the β2-Adrenergic Receptor in Lymphocytes

    No full text
    Single-nucleotide polymorphisms of the β2-adrenergic receptor gene and its 5′ promoter have been associated with differences in receptor function and desensitization. Linkage disequilibrium may account for inconsistencies in reported effects of isolated polymorphisms. Therefore, we have investigated the three most common homozygous haplotypes of the β2-adrenergic receptor (position 19 [Cys/Arg] of the 5′ leader cistron and positions 16 [Arg/Gly] and 27 [Gln/Glu] of the receptor) for putative differences in agonist-induced desensitization. Lymphocytes of well defined nonasthmatic, nonallergic subjects homozygous for the haplotype CysGlyGln, ArgGlyGlu, or CysArgGln were isolated. Desensitization of (−)-isoproterenol–induced cyclic adenosine monophosphate (cAMP) accumulation and β2-adrenergic receptor sequestration and downregulation were measured in relation to β2-adrenergic receptor-mediated inhibition of IFN-γ and interleukin-5 production. We observed that lymphocytes of individuals bearing the CysGlyGln haplotype were more susceptible to desensitization of the β-agonist–induced cAMP response than those of individuals with the ArgGlyGlu or CysArgGln haplotype. The haplotype-dependent desensitization of β-agonist–induced cAMP response was not associated with haplotype-dependent β2-adrenergic receptor sequestration or downregulation. In addition, our data suggest reduced inhibition, in lymphocytes of subjects with the CysGlyGln haplotype, of interleukin-5 production induced by treatment with antibodies to the T-cell receptor–CD3 complex and to costimulatory molecule CD28 (αCD3/αCD28). This is the first study demonstrating haplotype-related differences in agonist-induced β2-adrenergic receptor desensitization in primary human cells. This haplotype-related desensitization of the β2-adrenergic receptor in lymphocytes might have consequences regarding the regulation of helper T-cell type 2 inflammatory responses

    Assessment of gene promoter hypermethylation for detection of cervical neoplasia

    No full text
    Current cervical cancer screening is based on morphological assessment of Pap smears and associated with significant false negative and false positive results. Previously, we have shown that detection of hypermethylated genes in cervical scrapings using quantitative methylation-specific PCR (QMSP) is a promising tool for identification of squamous cell cervical cancer. Aim of the present pilot-study was to evaluate presence of hypermethylated genes in cervical carcinogenesis, both in squamous cell as well as adenocarcinomas. Cervical scrapings were obtained from 30 patients diagnosed with cervical cancer (20 squamous cell carcinomas and 10 adenocarcinomas) and 19 women with histologically normal cervices. The scraped cells were used for, determination of promoter hypermethylation by QMSP for 12 genes and for morphological assessment. Overall, CALCA, DAPK, ESR1, TIMP3, APC and RAR-beta(2) promoters were significantly more often hypermethylated in cancers than in controls, while adenocarcinomas were more often hypermethylated above the highest control ratio for APC, TIMP3 and RASSF1A promoters. Combining 4 genes (CALCA, DAPK, ESR1 and APC) yielded a sensitivity of 89% (with all adenocarcinomas identified), equal to cytomorphology (89%) and high-risk human papilloma virus (Hr-HPV; 90%). The 4-gene QMSP proved theoretically superior to cytomorphology as well as Hr-HPV in specificity (100% vs. 83 and 68%, respectively), because cytology identified 3 controls as moderate or severe dyskaryosis and 6 controls were positive for Hr-HPV. In conclusions, QMSP of 4 gene promoters combined appears to have comparable sensitivity and potentially better specificity in comparison to "classic" cytomorphological assessment and Hr-HPV detection. QMSP holds promise as a new diagnostic tool for both squamous cell carcinoma and adenocarcinoma of the cervix. (c) 2006 Wiley-Liss, Inc

    An overview of innovative techniques to improve cervical cancer screening

    No full text
    Although current cytomorphology-based cervical cancer screening has reduced the incidence of cervical cancer, Papsmears are associated with high false positive and false negative rates. This has spurred the search for new technologies to improve current screening. New methodologies are automation of Pap-smear analysis, addition of new biological or molecular markers to traditional cytology or using these new markers to replace the current screening method. In this overview we will summarize data on cervical cancer epidemiology and etiology and the current cervical cancer screening approach. Available data on new screening approaches, such as quantitative cytochemistry, detection of loss of heterozygosity (LOH) and hypermethylation analysis will be reviewed.We discuss the potential of these approaches to replace or augment current screening. When available, data on cost– effectiveness of certain approaches will be provided. In short, Human Papillomavirus (HPV) DNA detection stands closest to implementation in nation-wide screening programs of all markers reviewed. However, specificity is low in women aged <35 years and the psychological effects of knowledge of HPV positivity in absence of cervical (pre) malignant disease are important drawbacks. In our opinion the results of large clinical trials should be awaited before proceeding to implement HPV DNA detection. New technologies based on molecular changes associated with cervical carcinogenesis might result in comparable sensitivity, but improved specificity. Hypermethylation analysis is likely to be more objective to identify patients with high grade squamous intra-epithelial lesions (HSIL) or invasive cancer with a higher specificity than current cytomorphology based screening

    Genome-wide methylation profiling identifies hypermethylated biomarkers in high-grade cervical intraepithelial neoplasia

    No full text
    Epigenetic modifications, such as aberrant DNA promoter methylation, are frequently observed in cervical cancer. Identification of hypermethylated regions allowing discrimination between normal cervical epithelium and high-grade cervical intraepithelial neoplasia (CIN2/3), or worse, may improve current cervical cancer population-based screening programs. In this study, the DNA methylome of high-grade CIN lesions was studied using genome-wide DNA methylation screening to identify potential biomarkers for early diagnosis of cervical neoplasia. Methylated DNA Immunoprecipitation (MeDIP) combined with DNA microarray was used to compare DNA methylation profiles of epithelial cells derived from high-grade CIN lesions with normal cervical epithelium. Hypermethylated differentially methylated regions (DMRs) were identified. Validation of nine selected DMRs using BSP and MSP in cervical tissue revealed methylation in 63.2–94.7% high-grade CIN and in 59.3–100% cervical carcinomas. QMSP for the two most significant high-grade CIN-specific methylation markers was conducted exploring test performance in a large series of cervical scrapings. Frequency and relative level of methylation were significantly different between normal and cancer samples. Clinical validation of both markers in cervical scrapings from patients with an abnormal cervical smear confirmed that frequency and relative level of methylation were related with increasing severity of the underlying CIN lesion and that ROC analysis was discriminative. These markers represent the COL25A1 and KATNAL2 and their observed increased methylation upon progression could intimate the regulatory role in carcinogenesis. In conclusion, our newly identified hypermethylated DMRs represent specific DNA methylation patterns in high-grade CIN lesions and are candidate biomarkers for early detection.

    Discovery of novel methylation-based biomarkers for epithelial ovarian cancer using oligonucleotide microarrays

    No full text
    Abstract Objective: To improve current screening modalities, additional molecular markers that allow detection of ovarian cancer at an early stage are needed. The aim of the current study was to identify novel methylation-based biomarkers for ovarian cancer. Methods: Genes frequently expressed at low levels were identified by comparing global expression levels from 232 primary ovarian cancers to Universal Reference RNA. Ten genes possessing a CpG island in the promoter region that showed frequent low expression in serous cancers and at least one other histological subtype were selected. The methylation status of candidate genes was verified in 50 sporadic ovarian cancers, 11 hereditary cancers, 13 borderline cancers and 12 cystadenomas using methylation specific PCR (MSP). Results: Three candidate genes (IGFBP1, LIN28 and ZNF582) showed frequent methylation in cancers and were unmethylated in normal leukocyte DNA and human ovarian surface epithelial cells. Promoter methylation of any of the three candidate genes was observed in 88% of stage III/IV cancers and 72% of stage I/II cancers. In contrast, only 9% of hereditary cancers showed evidence of methylation for any of the three genes (p&amp;lt;0.001). IGFBP1 was mainly methylated in stage III/IV cancers (88% vs. 12%, p&amp;lt;0.001), while methylation of LIN28 and ZNF582 was more frequent in stage I/II cancers (8% vs. 44% and 8% vs. 48%, respectively; p&amp;lt;0.05). Conclusions: Using oligonucleotide microarray data, three novel methylation-based biomarkers for sporadic epithelial ovarian cancer were discovered. Further studies should elucidate the methylation status of these genes in larger cohorts of ovarian cancers and investigate their methylation status in serum. Note: This abstract was not presented at the AACR 101st Annual Meeting 2010 because the presenter was unable to attend. Citation Format: {Authors}. {Abstract title} [abstract]. In: Proceedings of the 101st Annual Meeting of the American Association for Cancer Research; 2010 Apr 17-21; Washington, DC. Philadelphia (PA): AACR; Cancer Res 2010;70(8 Suppl):Abstract nr 161.</jats:p
    corecore