27 research outputs found

    Tunka Advanced Instrument for cosmic rays and Gamma Astronomy

    Full text link
    The paper is a script of a lecture given at the ISAPP-Baikal summer school in 2018. The lecture gives an overview of the Tunka Advanced Instrument for cosmic rays and Gamma Astronomy (TAIGA) facility including historical introduction, description of existing and future setups, and outreach and open data activities.Comment: Lectures given at the ISAPP-Baikal Summer School 2018: Exploring the Universe through multiple messengers, 12-21 July 2018, Bol'shie Koty, Russi

    TAIGA -- an advanced hybrid detector complex for astroparticle physics and high energy gamma-ray astronomy

    Full text link
    The physical motivations, present status, main results in study of cosmic rays and in the field of gamma-ray astronomy as well future plans of the TAIGA-1 (Tunka Advanced Instrument for cosmic ray physics and Gamma Astronomy) project are presented. The TAIGA observatory addresses ground-based gamma-ray astronomy and astroparticle physics at energies from a few TeV to several PeV, as well as cosmic ray physics from 100 TeV to several EeV. The pilot TAIGA-1 complex is located in the Tunka valley, ~50 km west from the southern tip of the lake Baikal.Comment: Submission to SciPost Phys. Proc., 10 pages, 2 figure

    Primary Cosmic Rays Energy Spectrum and Mean Mass Composition by the Data of the TAIGA Astrophysical Complex

    Full text link
    The corrected dependence of the mean depth of the EAS maximum XmaxX_{max} on the energy was obtained from the data of the Tunka-133 array for 7 years and the TAIGA-HiSCORE array for 2 year. The parameter lnA\langle\ln A\rangle, characterizing the mean mass compositon was derived from these results. The differential energy spectrum of primary cosmic rays in the energy range of 210142\cdot 10^{14} - 210162\cdot 10^{16}\,eV was reconstructed using the new parameter Q100Q_{100} the Cherenkov light flux at the core distance 100 m.}Comment: 6 pages, 3 figures, Submitted to SciPost Phys.Pro

    TAIGA: results and perspectives

    No full text
    In this talk, we describe the status and the perspectives of the hybrid Air Shower Array TAIGA (Tunka Advanced Instrument for cosmic rays and Gamma Astronomy) which is currently under construction in the Tunka Valley close to Lake Baikal and is taking data in its initial configurations. TAIGA is designed for the study of gamma rays and charged cosmic rays in the energy range of 1013 eV - 1018 eV. It has the potential to play an important role in the search for Galactic Pevatrons and within a multi-messenger approach to explore the high-energy sky

    TAIGA: results and perspectives

    Get PDF
    In this talk, we describe the status and the perspectives of the hybrid Air Shower Array TAIGA (Tunka Advanced Instrument for cosmic rays and Gamma Astronomy) which is currently under construction in the Tunka Valley close to Lake Baikal and is taking data in its initial configurations. TAIGA is designed for the study of gamma rays and charged cosmic rays in the energy range of 1013 eV - 1018 eV. It has the potential to play an important role in the search for Galactic Pevatrons and within a multi-messenger approach to explore the high-energy sky

    Detecting Gamma Rays with Energies Greater than 3–4 ТeV from the Crab Nebula and Blazar Markarian 421 by Imaging Atmospheric Cherenkov Telescopes in the TAIGA Experiment

    No full text
    The TAIGA hybrid gamma-ray observatory is currently being developed in the Tunka Valley, 50 km from Lake Baikal, to study gamma radiation and charged cosmic ray fluxes in the 1013^{13}–1018^{18} eV range. The first results are presented for detecting gamma rays from the Crab Nebula in 44 h of observation, and from the blazar Markarian 421 in 62 h of observation with a significance of around 5–6 σ by one of the TAIGA IACT telescopes

    Depth of the Maximum of Extensive Air Showers (EASes) and the Mean Mass Composition of Primary Cosmic Rays in the 1015^{15}–1018^{18} eV Range of Energies, According to Data from the TUNKA-133 and TAIGA-HiSCORE Arrays for Detecting EAS Cherenkov Light in the Tunkinsk Valley

    No full text
    A corrected energy dependence of the depth of the maximum in the wide range of energies 1015^{15} to 1018^{18} eV is obtained using data collected at the Tunka-133 facility over 7 years of operation (2009–2017) and the TAIGA-HiSCORE facility in the 2019–2020 season. At the highest energies, our results match those of the Pierre Auger observatory. The results are converted to parameter ❬ln A❭, which characterizes the mean EAS composition
    corecore