5 research outputs found

    Loss of MTAP expression is a negative prognostic marker in Ewing sarcoma family of tumors.

    Get PDF
    AIM: The Ewing sarcoma family of tumors (ESFT) is a group of malignant small round cell neoplasms of bones and soft tissues closely histogenetically related. Methylthioadenosine phosphorylase (MTAP) deficiency has been recently associated with increased tumor aggressiveness and poor outcomes in different types of neoplasms. However, the expression of this biomarker and its biological role in ESFT remain largely unknown. METHODS: Immunohistochemical expression of MTAP was accessed in 112 patients with ESFT in a tissue microarray platform and associated with clinicopathological parameters and overall survival(OS). RESULTS: Loss of MTAP expression was significantly associated with lower OS in both univariate and multivariate analyses. CONCLUSION: Loss of MTAP expression is an independent negative prognostic biomarker in ESFT.Fundação de Amparo á Pesquisa do Estado de São Paulo (FAPESP) and CNPq grants to RM Reis. WP Menezes is recipient of a FAPESP fellowship (2016/06833–2). The authors have no other relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript apart from those disclosed.info:eu-repo/semantics/publishedVersio

    XAF1 as a modifier of p53 function and cancer susceptibility

    Get PDF
    Cancer risk is highly variable in carriers of the common TP53-R337H founder allele, possibly due to the influence of modifier genes. Whole-genome sequencing identified a variant in the tumor suppressor XAF1 (E134*/Glu134Ter/rs146752602) in a subset of R337H carriers. Haplotype-defining variants were verified in 203 patients with cancer, 582 relatives, and 42,438 newborns. The compound mutant haplotype was enriched in patients with cancer, conferring risk for sarcoma (P = 0.003) and subsequent malignancies (P = 0.006). Functional analyses demonstrated that wild-type XAF1 enhances transactivation of wild-type and hypomorphic TP53 variants, whereas XAF1-E134* is markedly attenuated in this activity. We propose that cosegregation of XAF1-E134* and TP53-R337H mutations leads to a more aggressive cancer phenotype than TP53-R337H alone, with implications for genetic counseling and clinical management of hypomorphic TP53 mutant carriers.Fil: Pinto, Emilia M.. St. Jude Children's Research Hospital; Estados UnidosFil: Figueiredo, Bonald C.. Instituto de Pesquisa Pelé Pequeno Principe; BrasilFil: Chen, Wenan. St. Jude Children's Research Hospital; Estados UnidosFil: Galvao, Henrique C.R.. Hospital de Câncer de Barretos; BrasilFil: Formiga, Maria Nirvana. A.c.camargo Cancer Center; BrasilFil: Fragoso, Maria Candida B.V.. Universidade de Sao Paulo; BrasilFil: Ashton Prolla, Patricia. Universidade Federal do Rio Grande do Sul; BrasilFil: Ribeiro, Enilze M.S.F.. Universidade Federal do Paraná; BrasilFil: Felix, Gabriela. Universidade Federal da Bahia; BrasilFil: Costa, Tatiana E.B.. Hospital Infantil Joana de Gusmao; BrasilFil: Savage, Sharon A.. National Cancer Institute; Estados UnidosFil: Yeager, Meredith. National Cancer Institute; Estados UnidosFil: Palmero, Edenir I.. Hospital de Câncer de Barretos; BrasilFil: Volc, Sahlua. Hospital de Câncer de Barretos; BrasilFil: Salvador, Hector. Hospital Sant Joan de Deu Barcelona; EspañaFil: Fuster Soler, Jose Luis. Hospital Clínico Universitario Virgen de la Arrixaca; EspañaFil: Lavarino, Cinzia. Hospital Sant Joan de Deu Barcelona; EspañaFil: Chantada, Guillermo Luis. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. St. Jude Children's Research Hospital; Estados UnidosFil: Vaur, Dominique. Comprehensive Cancer Center François Baclesse; FranciaFil: Odone Filho, Vicente. Universidade de Sao Paulo; BrasilFil: Brugières, Laurence. Institut de Cancerologie Gustave Roussy; FranciaFil: Else, Tobias. University of Michigan; Estados UnidosFil: Stoffel, Elena M.. University of Michigan; Estados UnidosFil: Maxwell, Kara N.. University of Pennsylvania; Estados UnidosFil: Achatz, Maria Isabel. Hospital Sirio-libanês; BrasilFil: Kowalski, Luis. A.c.camargo Cancer Center; BrasilFil: De Andrade, Kelvin C.. National Cancer Institute; Estados UnidosFil: Pappo, Alberto. St. Jude Children's Research Hospital; Estados UnidosFil: Letouze, Eric. Centre de Recherche Des Cordeliers; FranciaFil: Latronico, Ana Claudia. Universidade de Sao Paulo; BrasilFil: Mendonca, Berenice B.. Universidade de Sao Paulo; BrasilFil: Almeida, Madson Q.. Universidade de Sao Paulo; BrasilFil: Brondani, Vania B.. Universidade de Sao Paulo; BrasilFil: Bittar, Camila M.. Universidade Federal do Rio Grande do Sul; BrasilFil: Soares, Emerson W.S.. Hospital Do Câncer de Cascavel; BrasilFil: Mathias, Carolina. Universidade Federal do Paraná; BrasilFil: Ramos, Cintia R.N.. Hospital de Câncer de Barretos; BrasilFil: Machado, Moara. National Cancer Institute; Estados UnidosFil: Zhou, Weiyin. National Cancer Institute; Estados UnidosFil: Jones, Kristine. National Cancer Institute; Estados UnidosFil: Vogt, Aurelie. National Cancer Institute; Estados UnidosFil: Klincha, Payal P.. National Cancer Institute; Estados UnidosFil: Santiago, Karina M.. A.c.camargo Cancer Center; BrasilFil: Komechen, Heloisa. Instituto de Pesquisa Pelé Pequeno Principe; BrasilFil: Paraizo, Mariana M.. Instituto de Pesquisa Pelé Pequeno Principe; BrasilFil: Parise, Ivy Z.S.. Instituto de Pesquisa Pelé Pequeno Principe; BrasilFil: Hamilton, Kayla V.. St. Jude Children's Research Hospital; Estados UnidosFil: Wang, Jinling. St. Jude Children's Research Hospital; Estados UnidosFil: Rampersaud, Evadnie. St. Jude Children's Research Hospital; Estados UnidosFil: Clay, Michael R.. St. Jude Children's Research Hospital; Estados UnidosFil: Murphy, Andrew J.. St. Jude Children's Research Hospital; Estados UnidosFil: Lalli, Enzo. Institut de Pharmacologie Moléculaire et Cellulaire; FranciaFil: Nichols, Kim E.. St. Jude Children's Research Hospital; Estados UnidosFil: Ribeiro, Raul C.. St. Jude Children's Research Hospital; Estados UnidosFil: Rodriguez-Galindo, Carlos. St. Jude Children's Research Hospital; Estados UnidosFil: Korbonits, Marta. Queen Mary University of London; Reino UnidoFil: Zhang, Jinghui. St. Jude Children's Research Hospital; Estados UnidosFil: Thomas, Mark G.. Colegio Universitario de Londres; Reino UnidoFil: Connelly, Jon P.. St. Jude Children's Research Hospital; Estados UnidosFil: Pruett-Miller, Shondra. St. Jude Children's Research Hospital; Estados UnidosFil: Diekmann, Yoan. Colegio Universitario de Londres; Reino UnidoFil: Neale, Geoffrey. St. Jude Children's Research Hospital; Estados UnidosFil: Wu, Gang. St. Jude Children's Research Hospital; Estados UnidosFil: Zambetti, Gerard P.. St. Jude Children's Research Hospital; Estados Unido

    Clinical and Molecular Assessment of Patients with Lynch Syndrome and Sarcomas Underpinning the Association with MSH2 Germline Pathogenic Variants

    No full text
    Lynch syndrome (LS) is a hereditary cancer-predisposing syndrome associated most frequently with epithelial tumors, particularly colorectal (CRC) and endometrial carcinomas (EC). The aim of this study was to investigate the relationship between sarcomas and LS by performing clinical and molecular characterization of patients presenting co-occurrence of sarcomas and tumors from the LS spectrum. We identified 27 patients diagnosed with CRC, EC, and other LS-associated tumors who had sarcomas in the same individuals or families. Germline genetic testing, mismatch repair (MMR) protein immunohistochemistry, microsatellite instability (MSI), and other molecular analyses were performed. Five LS patients presenting personal or family history of sarcomas were identified (3 MSH2 carriers and 2 MLH1), with 2 having Muir–Torre phenotypes. For two MSH2 carriers we confirmed the etiology of the sarcomas (one liposarcoma and two osteosarcomas) as LS-related, since the tumors were MSH2/MSH6-deficient, MSI-high, or presented a truncated MSH2 transcript. Additionally, we reviewed 43 previous reports of sarcomas in patients with LS, which revealed a high frequency (58%) of MSH2 alterations. In summary, sarcomas represent a rare clinical manifestation in patients with LS, especially in MSH2 carriers, and the analysis of tumor biological characteristics can be useful for definition of tumor etiology and novel therapeutic options

    The Brazilian TP53 mutation (R337H) and sarcomas.

    No full text
    Sarcomas represent less than 1% of all solid neoplasms in adults and over 20% in children. Their etiology is unclear, but genetic susceptibility plays an important role in this scenario. Sarcoma is central in Li-Fraumeni Syndrome (LFS), a familial predisposition cancer syndrome. In Brazil, the high prevalence of p.Arg337His mutations in the TP53 gene brings about a unique condition: a cluster of LFS. In the present work, we studied 502 sarcoma patients not selected by age or family history in an attempt to assess the impact of the so-called "Brazilian germline TP53 mutation" (p.Arg337His) on this tumor type. We found that 8% of patients are carriers, with leiomyosarcoma being the main histologic type of sarcoma, corresponding to 52.5% of the patients with the mutated TP53 gene. These findings emphasize the importance of genetic counseling and can better guide the management of sarcoma patients

    Oncogenetics service and the Brazilian public health system: the experience of a reference Cancer Hospital

    No full text
    The identification of families at-risk for hereditary cancer is extremely important due to the prevention potential in those families. However, the number of Brazilian genetic services providing oncogenetic care is extremely low for the continental dimension of the country and its population. Therefore, at-risk patients do not receive appropriate assistance. This report describes the creation, structure and management of a cancer genetics service in a reference center for cancer prevention and treatment, the Barretos Cancer Hospital (BCH). The Oncogenetics Department (OD) of BCH offers, free of charge, to all patients/relatives with clinical criteria, the possibility to perform i) genetic counseling, ii) preventive examinations and iii) genetic testing with the best quality standards. The OD has a multidisciplinary team and is integrated with all specialties. The genetic counseling process consists (mostly) of two visits. In 2014, 614 individuals (371 families) were seen by the OD. To date, over 800 families were referred by the OD for genetic testing. The support provided by the Oncogenetics team is crucial to identify at-risk individuals and to develop preventive and personalized behaviors for each situation, not only to the upper-middle class population, but also to the people whose only possibility is the public health system.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP, grant 2013/24633-2)MCT/FINEP/CTINFRAPROINFRA 02/2010 grantNational Counsel of Technological and Scientific Development (CNPq) scholarshi
    corecore