147 research outputs found

    Stellar capture by an accretion disc

    Full text link
    Long-term evolution of a stellar orbit captured by a massive galactic center via successive interactions with an accretion disc has been examined. An analytical solution describing evolution of the stellar orbital parameters during the initial stage of the capture was found. Our results are applicable to thin Keplerian discs with an arbitrary radial distribution of density and rather general prescription for the star-disc interaction. Temporal evolution is given in the form of quadrature which can be carried out numerically.Comment: Letter to MNRAS, 5 pages and 3 figures; also available at http://otokar.troja.mff.cuni.cz/user/karas/au_www/karas/papers.ht

    Symplectic integration of space debris motion considering several Earth's shadowing models

    Full text link
    In this work, we present a symplectic integration scheme to numerically compute space debris motion. Such an integrator is particularly suitable to obtain reliable trajectories of objects lying on high orbits, especially geostationary ones. Indeed, it has already been demonstrated that such objects could stay there for hundreds of years. Our model takes into account the Earth's gravitational potential, luni-solar and planetary gravitational perturbations and direct solar radiation pressure. Based on the analysis of the energy conservation and on a comparison with a high order non-symplectic integrator, we show that our algorithm allows us to use large time steps and keep accurate results. We also propose an innovative method to model Earth's shadow crossings by means of a smooth shadow function. In the particular framework of symplectic integration, such a function needs to be included analytically in the equations of motion in order to prevent numerical drifts of the energy. For the sake of completeness, both cylindrical shadows and penumbra transitions models are considered. We show that both models are not equivalent and that big discrepancies actually appear between associated orbits, especially for high area-to-mass ratios

    Emission Line Profiles from Self-Gravitating Thin Disks

    Get PDF
    We have constructed general relativistic models of a stationary, axially symmnetric, Keplerian thin disk around a rotating black hole. We computed profiles of a spectral line, emitted in the inner region of the disk. In our models we have taken into account also the self-gravity of the disk. The aim of this work is to study gravitational effects on the line profiles in connection with the X-ray features observed in spectra of active galactic nuclei. In some cases, the calculated profiles are clearly affected by the disk gravity but relativistic dragging effects are found to be negligible.Comment: 26 pages, 8 figures, uuencoded postscript file, to appear in The Astrophysical Journal, Part I. Printed version available upon request from the author
    corecore