11 research outputs found

    Two-stage ZnS Shell Coating on the CuInS2 Quantum Dots for Their Effective Solubilization

    Get PDF
    High-precision diagnostics is one of the necessary conditions for effective treatment of diseases. Bioimaging is one of the most promising modern methods of tumor diagnosis. High-quality luminophores are necessary for effective bio-imaging. CuInS2(CIS) quantum dots (QDs) are very promising luminophores for these applications due to their low toxicity and long-term stability of their properties. Two batches of CIS QDs with different positions of the luminescence maximum have been obtained. The position of the luminescence maximum can be controlled by changing the Cu to In ratio; a decrease in this ratio cause a blue shift of the luminescence. The standard procedure of CIS synthesis yields QDs covered with thiols, which form strong bonds with the surface and prevent the ligand exchange; hence, it is very hard to adapt CIS QDs for biological tasks using the standard hydrophobic to hydrophilic ligand exchange procedure. We have developed a two-stage shell coating procedure yielding CIS QDs covered with amines, which is suitable for ligand exchange; hence,the resultant QDs can be adapted for modern biological and medical applications. Keywords: Quantum dots, CuInS2, solubilization

    Large-scale Synthesis of Monodisperse PbS Quantum Dots

    Get PDF
     PbS quantum dots (QDs) are a promising material for designing of modern solar energy convertors. Yet, their reproducible synthesis is still intractable, since typical methods do not allow controlling the growth of PbS nanocrystals due to the high reaction rates. Here we propose the two-step synthetic procedure, which allows controlling precisely nanocrystal growth on the second stage. The first step allows obtaining small PbS QDs by the standard hot injection method, which are then slowly grown to a desired size on the second stage. By use of this method, we were able to obtain gram-scale batches of PbS QDs with high reproducibility of the photoluminescence properties of the synthesis product. Keywords: PbS quantum dots, nanoparticles growth, infrared luminescenc

    The Effect of Quantum Dot Shell Structure on Fluorescence Quenching By Acridine Ligand

    Get PDF
    The current strategy for the development of advanced methods of tumor treatment focuses on targeted drug delivery to tumor cells. Quantum dot (QD) - semiconductor fluorescent nanocrystal, conjugated with a pharmacological ligand, such as acridine, ensures real-time tracking of the delivery process of the active substance. However, the problem of QD fluorescence quenching caused by charge transfer can arise in the case when acridine is bound to the QD. We found that QD shell structure has a defining role on photoinduced electron transfer from QD on acridine ligand which leads to quenching of QD photoluminescence. We have found that multishell CdSe/ZnS/CdS/ZnS QD structure provides minimal reduction of photoluminescence quantum yield at minimal shell thickness compared to classical thin ZnS or “giant” shells. Thus, CdSe/ZnS/CdS/ZnS core/multishell QD could be an optimal choice for engineering of small-sized acridine-based fluorescent labels for tumor diagnosis and treatment systems. Keywords: Quantum dot, photoluminescence quenching, DNA ligand, acridine derivative
    corecore