965 research outputs found
Spin-charge separation and simultaneous spin and charge Kondo effect
We study the spin-charge separation in a Kondo-like model for an impurity
with a spin and a charge (isospin) degree of freedom coupled to a single
conduction channel (the ``spin-charge'' Kondo model). We show that the spin and
charge Kondo effects can occur simultaneously at any coupling strength. In the
continuum (wide-band or weak coupling) limit, the Kondo screening in each
sector is independent, while at finite bandwidth and strong coupling the
lattice effects lead to a renormalization of the effective Kondo exchange
constants; nevertheless, universal spin and charge Kondo effects still occur.
We find similar behavior in the two-impurity Anderson model with positive and
negative electron-electron interaction and in the two-impurity
Anderson-Holstein model with a single phonon mode. We comment on the
applicability of such models to describe the conductance of deformable
molecules with a local magnetic moment.Comment: 13 pages, 11 figure
Magnetoconductance oscillations in quasiballistic multimode nanowires
We calculate the conductance of quasi-one-dimensional nanowires with
electronic states confined to a surface charge layer, in the presence of a
uniform magnetic field. Two-terminal magnetoconductance (MC) between two leads
deposited on the nanowire via tunnel barriers is dominated by density-of-states
(DOS) singularities, when the leads are well apart. There is also a mesoscopic
correction due to a higher-order coherent tunneling between the leads for small
lead separation. The corresponding MC structure depends on the interference
between electron propagation via different channels connecting the leads, which
in the simplest case, for the magnetic field along the wire axis, can be
crudely characterized by relative winding numbers of paths enclosing the
magnetic flux. In general, the MC oscillations are aperiodic, due to the Zeeman
splitting, field misalignment with the wire axis, and a finite extent of
electron distribution across the wire cross section, and are affected by
spin-orbit coupling. The quantum-interference MC traces contain a wealth of
information about the electronic structure of multichannel wires, which would
be complimentary to the DOS measurements. We propose a four-terminal
configuration to enhance the relative contribution of the higher-order
tunneling processes and apply our results to realistic InAs nanowires carrying
several quantum channels in the surface charge-accumulation layer.Comment: 11 pages, 8 figure
Unusual electronic ground state of a prototype cuprate: band splitting of single CuO_2-plane Bi_2 Sr_(2-x) La_x CuO_(6+delta)
By in-situ change of polarization a small splitting of the Zhang-Rice singlet
state band near the Fermi level has been resolved for optimum doped (x=0.4)
BiSrLaCuO at the (pi,0)-point (R.Manzke et al.
PRB 63, R100504 (2001). Here we treat the momentum dependence and lineshape of
the split band by photoemission in the EDC-mode with very high angular and
energy resolution. The splitting into two destinct emissions could also be
observed over a large portion of the major symmetry line M, giving the
dispersion for the individual contributions. Since bi-layer effects can not be
present in this single-layer material the results have to be discussed in the
context of one-particle removal spectral functions derived from current
theoretical models. The most prominent are microscopic phase separation
including striped phase formation, coexisting antiferromagnetic and
incommensurate charge-density-wave critical fluctuations coupled to electrons
(hot spots) or even spin charge separation within the Luttinger liquid picture,
all leading to non-Fermi liquid like behavior in the normal state and having
severe consequences on the way the superconducting state forms. Especially the
possibilty of observing spinon and holon excitations is discussed.Comment: 5 pages, 4 figure
Ga-induced atom wire formation and passivation of stepped Si(112)
We present an in-depth analysis of the atomic and electronic structure of the
quasi one-dimensional (1D) surface reconstruction of Ga on Si(112) based on
Scanning Tunneling Microscopy and Spectroscopy (STM and STS), Rutherford
Backscattering Spectrometry (RBS) and Density Functional Theory (DFT)
calculations. A new structural model of the Si(112)6 x 1-Ga surface is
inferred. It consists of Ga zig-zag chains that are intersected by
quasi-periodic vacancy lines or misfit dislocations. The experimentally
observed meandering of the vacancy lines is caused by the co-existence of
competing 6 x 1 and 5 x 1 unit cells and by the orientational disorder of
symmetry breaking Si-Ga dimers inside the vacancy lines. The Ga atoms are fully
coordinated, and the surface is chemically passivated. STS data reveal a
semiconducting surface and show excellent agreement with calculated Local
Density of States (LDOS) and STS curves. The energy gain obtained by fully
passivating the surface calls the idea of step-edge decoration as a viable
growth method toward 1D metallic structures into question.Comment: Submitted, 13 pages, accepted in Phys. Rev. B, notational change in
Fig.
An Exactly Solvable Kondo Problem for Interacting One-Dimensional Fermions
The single impurity Kondo problem in the one-dimensional -potential
Fermi gas is exactly solved for two sets of special coupling constants via
Bethe ansatz. It is found that ferromagnetic Kondo screening does occur in one
case which confirms the Furusaki-Nagaosa conjecture while in the other case it
does not, which we explain in a simple physical picture. The surface energy,
the low temperature specific heat and the Pauli susceptibility induced by the
impurity and thereby the Kondo temperature are derived explicitly.Comment: 8 pages, LATEX, REVTE
Bandpass Dependence of X-ray Temperatures in Galaxy Clusters
We explore the band dependence of the inferred X-ray temperature of the
intracluster medium (ICM) for 192 well-observed galaxy clusters selected from
the Chandra Data Archive. If the hot ICM is nearly isothermal in the projected
region of interest, the X-ray temperature inferred from a broad-band (0.7-7.0
keV) spectrum should be identical to the X-ray temperature inferred from a
hard-band (2.0-7.0 keV) spectrum. However, if unresolved cool lumps of gas are
contributing soft X-ray emission, the temperature of a best-fit
single-component thermal model will be cooler for the broad-band spectrum than
for the hard-band spectrum. Using this difference as a diagnostic, the ratio of
best-fitting hard-band and broad-band temperatures may indicate the presence of
cooler gas even when the X-ray spectrum itself may not have sufficient
signal-to-noise to resolve multiple temperature components. To test this
possible diagnostic, we extract X-ray spectra from core-excised annular regions
for each cluster in our archival sample. We compare the X-ray temperatures
inferred from single-temperature fits when the energy range of the fit is
0.7-7.0 keV (broad) and when the energy range is 2.0/(1+z)-7.0 keV (hard). We
find that the hard-band temperature is significantly higher, on average, than
the broad-band temperature. Upon further exploration, we find this temperature
ratio is enhanced preferentially for clusters which are known merging systems.
In addition, cool-core clusters tend to have best-fit hard-band temperatures
that are in closer agreement with their best-fit broad-band temperatures. We
show, using simulated spectra, that this diagnostic is sensitive to secondary
cool components (TX = 0.5-3.0 keV) with emission measures >10-30% of the
primary hot component.Comment: Accepted for publication in Ap
Unconventional magnetoresistance in long InSb nanowires
Magnetoresistance in long correlated nanowires of degenerate semiconductor
InSb in asbestos matrix (wire diameter of around 5 nm, length 0.1 - 1 mm) is
studied over temperature range 2.3 - 300 K. At zero magnetic field the electric
conduction and the current-voltage characteristics of such wires obey the
power laws , , expected for
one-dimensional electron systems. The effect of magnetic field corresponds to a
20% growth of the exponents , at H=10 T. The observed
magnetoresistance is caused by the magnetic-field-induced breaking of the
spin-charge separation and represents a novel mechanism of magnetoresistance.Comment: To be published in JETP Letters, vol. 77 (2003
The X-ray surface brightness distribution from diffuse gas
We use simulations to predict the X-ray surface brightness distribution
arising from hot, cosmologically distributed diffuse gas. The distribution is
computed for two bands: 0.5-2 keV and 0.1-0.4 keV, using a
cosmological-constant dominated cosmology that fits many other observations. We
examine a number of numerical issues such as resolution, simulation volume and
pixel size and show that the predicted mean background is sensitive to
resolution such that higher resolution systematically increases the mean
predicted background. Although this means that we can compute only lower bounds
to the predicted level, these bounds are already quite restrictive. Since the
observed extra-galactic X-ray background is mostly accounted for by compact
sources, the amount of the observed background attributable to diffuse gas is
tightly constrained. We show that without physical processes in addition to
those included in the simulations (such as radiative cooling or
non-gravitational heating), both bands exceed observational limits. In order to
examine the effect of non-gravitational heating we explore a simple modeling of
energy injection and show that substantial amounts of heating are required
(i.e. 5 keV per particle when averaged over all baryons). Finally, we also
compute the distribution of surface brightness on the sky and show that it has
a well-resolved characteristic shape. This shape is substantially modified by
non-gravitational heating and can be used as a probe of such energy injection.Comment: 11 pages, 11 figures, submitted to Ap
Bethe Ansatz solution of a new class of Hubbard-type models
We define one-dimensional particles with generalized exchange statistics. The
exact solution of a Hubbard-type Hamiltonian constructed with such particles is
achieved using the Coordinate Bethe Ansatz. The chosen deformation of the
statistics is equivalent to the presence of a magnetic field produced by the
particles themselves, which is present also in a ``free gas'' of these
particles.Comment: 4 pages, revtex. Essentially modified versio
A Deep Look at the Emission-Line Nebula in Abell 2597
The close correlation between cooling flows and emission-line nebulae in
clusters of galaxies has been recognized for over a decade and a half, but the
physical reason for this connection remains unclear. Here we present deep
optical spectra of the nebula in Abell 2597, one of the nearest strong
cooling-flow clusters. These spectra reveal the density, temperature, and metal
abundances of the line-emitting gas. The abundances are roughly half-solar, and
dust produces an extinction of at least a magnitude in V. The absence of [O
III] 4363 emission rules out shocks as a major ionizing mechanism, and the
weakness of He II 4686 rules out a hard ionizing source, such as an active
galactic nucleus or cooling intracluster gas. Hot stars are therefore the best
candidate for producing the ionization. However, even the hottest O stars
cannot power a nebula as hot as the one we see. Some other nonionizing source
of heat appears to contribute a comparable amount of power. We show that the
energy flux from a confining medium can become important when the ionization
level of a nebula drops to the low levels seen in cooling-flow nebulae. We
suggest that this kind of phenomenon, in which energy fluxes from the
surrounding medium augment photoelectric heating, might be the common feature
underlying the diverse group of objects classified as LINERS.Comment: 33 Latex pages, including 16 Postscript figures, to appear in 1997
September 1 Astrophysical Journa
- …