5,162 research outputs found
On the temporal Wilson loop in the Hamiltonian approach in Coulomb gauge
We investigate the temporal Wilson loop using the Hamiltonian approach to
Yang-Mills theory. In simple cases such as the Abelian theory or the
non-Abelian theory in (1+1) dimensions, the known results can be reproduced
using unitary transformations to take care of time evolution. We show how
Coulomb gauge can be used for an alternative solution if the exact ground state
wave functional is known. In the most interesting case of Yang-Mills theory in
(3+1) dimensions, the vacuum wave functional is not known, but recent
variational approaches in Coulomb gauge give a decent approximation. We use
this formulation to compute the temporal Wilson loop and find that the Wilson
and Coulomb string tension agree within our approximation scheme. Possible
improvements of these findings are briefly discussed.Comment: 24 pages, 4 eps-figures; new version matches published on
Magnetic Properties of the Novel Low-Dimensional Cuprate Na5RbCu4(AsO4)4Cl2
The magnetic properties of a new compound, Na5RbCu4(AsO4)4Cl2 are reported.
The material has a layered structure comprised of square Cu4O4 tetramers. The
Cu ions are divalent and the system behaves as a low-dimensional S=1/2
antiferromagnet. Spin exchange in Na5RbCu4(AsO4)4Cl2 appears to be
quasi-two-dimensional and non-frustrated. Measurements of the bulk magnetic
susceptibility and heat capacity are consistent with low-dimensional magnetism.
The compound has an interesting, low-entropy, magnetic transition at T = 17 K.Comment: 4 pages, 5 figure
The spin 1/2 Heisenberg star with frustration II: The influence of the embedding medium
We investigate the spin 1/2 Heisenberg star introduced in J. Richter and A.
Voigt, J. Phys. A: Math. Gen. {\bf 27}, 1139 (1994). The model is defined by
; , . In extension to the Ref. we consider a more general
describing the properties of the spins surrounding the
central spin . The Heisenberg star may be considered as an essential
structure element of a lattice with frustration (namely a spin embedded in a
magnetic matrix ) or, alternatively, as a magnetic system with a
perturbation by an extra spin. We present some general features of the
eigenvalues, the eigenfunctions as well as the spin correlation of the model. For being a linear chain, a square
lattice or a Lieb-Mattis type system we present the ground state properties of
the model in dependence on the frustration parameter .
Furthermore the thermodynamic properties are calculated for being a
Lieb--Mattis antiferromagnet.Comment: 16 pages, uuencoded compressed postscript file, accepted to J. Phys.
A: Math. Ge
The J_1-J_2 antiferromagnet with Dzyaloshinskii-Moriya interaction on the square lattice: An exact diagonalization study
We examine the influence of an anisotropic interaction term of
Dzyaloshinskii-Moriya (DM) type on the groundstate ordering of the J_1-J_2
spin-1/2-Heisenberg antiferromagnet on the square lattice. For the DM term we
consider several symmetries corresponding to different crystal structures. For
the pure J_1-J_2 model there are strong indications for a quantum spin liquid
in the region of 0.4 < J_2/J_1 < 0.65. We find that a DM interaction influences
the breakdown of the conventional antiferromagnetic order by i) shifting the
spin liquid region, ii) changing the isotropic character of the groundstate
towards anisotropic correlations and iii) creating for certain symmetries a net
ferromagnetic moment.Comment: 7 pages, RevTeX, 6 ps-figures, to appear in J. Phys.: Cond. Ma
Magnetic Proximity Effect in Perovskite Superconductor/Ferromagnet Multilayers
superconducting/ferromagnetic
(SC/FM) multilayers have been studied by neutron reflectometry. Evidence for a
characteristic difference between the structural and magnetic depth profiles is
obtained from the occurrence of a structurally forbidden Bragg peak in the FM
state. The comparison with simulated reflectivity curves allows us to identify
two possible magnetization profiles: a sizable magnetic moment within the SC
layer antiparallel to the one in the FM layer (inverse proximity effect), or a
``dead'' region in the FM layer with zero net magnetic moment. The former
scenario is supported by an anomalous SC-induced enhancement of the
off-specular reflection, which testifies to a strong mutual interaction of SC
and FM order parameters.Comment: 4 pages, 2 figures, submitted to PR
Shear modulus of the hadron-quark mixed phase
Robust arguments predict that a hadron-quark mixed phase may exist in the
cores of some "neutron" stars. Such a phase forms a crystalline lattice with a
shear modulus higher than that of the crust due to the high density and charge
separation, even allowing for the effects of charge screening. This may lead to
strong continuous gravitational-wave emission from rapidly rotating neutron
stars and gravitational-wave bursts associated with magnetar flares and pulsar
glitches. We present the first detailed calculation of the shear modulus of the
mixed phase. We describe the quark phase using the bag model plus first-order
quantum chromodynamics corrections and the hadronic phase using relativistic
mean-field models with parameters allowed by the most massive pulsar. Most of
the calculation involves treating the "pasta phases" of the lattice via
dimensional continuation, and we give a general method for computing
dimensionally continued lattice sums including the Debye model of charge
screening. We compute all the shear components of the elastic modulus tensor
and angle average them to obtain the effective (scalar) shear modulus for the
case where the mixed phase is a polycrystal. We include the contributions from
changing the cell size, which are necessary for the stability of the
lower-dimensional portions of the lattice. Stability also requires a minimum
surface tension, generally tens of MeV/fm^2 depending on the equation of state.
We find that the shear modulus can be a few times 10^33 erg/cm^3, two orders of
magnitude higher than the first estimate, over a significant fraction of the
maximum mass stable star for certain parameter choices.Comment: 22 pages, 12 figures, version accepted by Phys. Rev. D, with the
corrections to the shear modulus computation and Table I given in the erratu
Coordination Dependence of Hyperfine Fields of 5sp Impurities on Ni Surfaces
We present first-principles calculations of the magnetic hyperfine fields H
of 5sp impurities on the (001), (111), and (110) surfaces of Ni. We examine the
dependence of H on the coordination number by placing the impurity in the
surfaces, on top of them at the adatom positions, and in the bulk. We find a
strong coordination dependence of H, different and characteristic for each
impurity. The behavior is explained in terms of the on-site s-p hybridization
as the symmetry is reduced at the surface. Our results are in agreement with
recent experimental findings.Comment: 4 pages, 3 figure
Encircling an Exceptional Point
We calculate analytically the geometric phases that the eigenvectors of a
parametric dissipative two-state system described by a complex symmetric
Hamiltonian pick up when an exceptional point (EP) is encircled. An EP is a
parameter setting where the two eigenvalues and the corresponding eigenvectors
of the Hamiltonian coalesce. We show that it can be encircled on a path along
which the eigenvectors remain approximately real and discuss a microwave cavity
experiment, where such an encircling of an EP was realized. Since the
wavefunctions remain approximately real, they could be reconstructed from the
nodal lines of the recorded spatial intensity distributions of the electric
fields inside the resonator. We measured the geometric phases that occur when
an EP is encircled four times and thus confirmed that for our system an EP is a
branch point of fourth order.Comment: RevTex 4.0, four eps-figures (low resolution
- …