6 research outputs found
Interobserver agreement in interpretation of chest radiographs for pediatric community acquired pneumonia: Findings of the pedCAPNETZ-cohort.
Although chest radiograph (CXR) is commonly used in diagnosing pediatric community acquired pneumonia (pCAP), limited data on interobserver agreement among radiologists exist. PedCAPNETZ is a prospective, observational, and multicenter study on pCAP. N = 233 CXR from patients with clinical diagnosis of pCAP were retrieved and n = 12 CXR without pathological findings were added. All CXR were interpreted by a radiologist at the site of recruitment and by two external, blinded pediatric radiologists. To evaluate interobserver agreement, the reporting of presence or absence of pCAP in CXR was analyzed, and prevalence and bias-adjusted kappa (PABAK) statistical testing was applied. Overall, n = 190 (82%) of CXR were confirmed as pCAP by two external pediatric radiologists. Compared with patients with pCAP negative CXR, patients with CXR-confirmed pCAP displayed higher C-reactive protein levels and a longer duration of symptoms before enrollment (p < .007). Further parameters, that is, age, respiratory rate, and oxygen saturation showed no significant difference. The interobserver agreement between the onsite radiologists and each of the two independent pediatric radiologists for the presence of pCAP was poor to fair (69%; PABAK = 0.39% and 76%; PABAK = 0.53, respectively). The concordance between the external radiologists was fair (81%; PABAK = 0.62). With regard to typical CXR findings for pCAP, chance corrected interrater agreement was highest for pleural effusions, infiltrates, and consolidations and lowest for interstitial patterns and peribronchial thickening. Our data show a poor interobserver agreement in the CXR-based diagnosis of pCAP and emphasized the need for harmonized interpretation standards
Pathogen spectra in hospitalised and nonhospitalised children with community-acquired pneumonia
Background Paediatric community-acquired pneumonia (CAP) is a leading cause of paediatric morbidity. However, particularly for outpatients with paediatric CAP, data on aetiology and management are scarce. Methods The prospective pedCAPNETZ study multicentrically enrols children and adolescents with outpatient-treated or hospitalised paediatric CAP in Germany. Blood and respiratory specimens were collected systematically, and comprehensive analyses of pathogen spectra were conducted. Follow-up evaluations were performed until day 90 after enrolment. Results Between December 2014 and August 2020, we enrolled 486 children with paediatric CAP at eight study sites, 437 (89.9%) of whom had radiographic evidence of paediatric CAP. Median (interquartile range) age was 4.5 (1.6–6.6) years, and 345 (78.9%) children were hospitalised. The most prevalent symptoms at enrolment were cough (91.8%), fever (89.2%) and tachypnoea (62.0%). Outpatients were significantly older, displayed significantly lower C-reactive protein levels and were significantly more likely to be symptom-free at follow-up days 14 and 90. Pathogens were detected in 90.3% of all patients (one or more viral pathogens in 68.1%; one or more bacterial strains in 18.7%; combined bacterial/viral pathogens in 4.1%). Parainfluenza virus and Mycoplasma pneumoniae were significantly more frequent in outpatients. The proportion of patients with antibiotic therapy was comparably high in both groups (92.4% of outpatients versus 86.2% of hospitalised patients). Conclusion We present first data on paediatric CAP with comprehensive analyses in outpatients and hospitalised cases and demonstrate high detection rates of viral pathogens in both groups. Particularly in young paediatric CAP patients with outpatient care, antibiotic therapy needs to be critically debated
Inter‐observer agreement in interpretation of chest radiographs for pediatric community acquired pneumonia – findings of the pedCAPNETZ‐cohort
Although chest radiograph (CXR) is commonly used in diagnosing pediatric community acquired pneumonia (pCAP), limited data on interobserver agreement among radiologists exist. PedCAPNETZ is a prospective, observational, and multicenter study on pCAP. N = 233 CXR from patients with clinical diagnosis of pCAP were retrieved and n = 12 CXR without pathological findings were added. All CXR were interpreted by a radiologist at the site of recruitment and by two external, blinded pediatric radiologists. To evaluate interobserver agreement, the reporting of presence or absence of pCAP in CXR was analyzed, and prevalence and bias-adjusted kappa (PABAK) statistical testing was applied. Overall, n = 190 (82%) of CXR were confirmed as pCAP by two external pediatric radiologists. Compared with patients with pCAP negative CXR, patients with CXR-confirmed pCAP displayed higher C-reactive protein levels and a longer duration of symptoms before enrollment (p < .007). Further parameters, that is, age, respiratory rate, and oxygen saturation showed no significant difference. The interobserver agreement between the onsite radiologists and each of the two independent pediatric radiologists for the presence of pCAP was poor to fair (69%; PABAK = 0.39% and 76%; PABAK = 0.53, respectively). The concordance between the external radiologists was fair (81%; PABAK = 0.62). With regard to typical CXR findings for pCAP, chance corrected interrater agreement was highest for pleural effusions, infiltrates, and consolidations and lowest for interstitial patterns and peribronchial thickening. Our data show a poor interobserver agreement in the CXR-based diagnosis of pCAP and emphasized the need for harmonized interpretation standards
PedCAPNETZ – prospective observational study on community acquired pneumonia in children and adolescents
Background: Pediatric community acquired pneumonia (pedCAP) is one of the leading causes for childhood morbidity accounting for up to 20% of pediatric hospital admissions in high income countries. In spite of its high morbidity, updated epidemiological and pathogen data after introduction of preventive vaccination and novel pathogen screening strategies are limited. Moreover, there is a need for validated recommendations on diagnostic and treatment regimens in pedCAP. Through collection of patient data and analysis of pathogen and host factors in a large sample of unselected pedCAP patients in Germany, we aim to address and substantially improve this situation.
Methods: pedCAPNETZ is an observational, multi-center study on pedCAP. Thus far, nine study centers in hospitals, outpatient clinics and practices have been initiated and more than 400 patients with radiologically confirmed pneumonia have been enrolled, aiming at a total of 1000 study participants. Employing an online data base, information on disease course, treatment as well as demographical and socioeconomical data is recorded. Patients are followed up until day 90 after enrollment; Comprehensive biosample collection and a central pedCAPNETZ biobank allow for in-depth analyses of pathogen and host factors. Standardized workflows to assure sample logistics and data management in more than fifteen future study centers have been established.
Discussion: Through comprehensive epidemiological, clinical and biological analyses, pedCAPNETZ fills an important gap in pediatric and infection research. To secure dissemination of the registry, we will raise clinical and scientific awareness at all levels. We aim at participating in decision making processes for guidelines and prevention strategies. Ultimately, we hope the results of the pedCAPNETZ registry will help to improve care and quality of life in pedCAP patients in the future
Pathogen spectra in hospitalised and nonhospitalised children with community-acquired pneumonia
Background
Paediatric community-acquired pneumonia (CAP) is a leading cause of paediatric morbidity. However, particularly for outpatients with paediatric CAP, data on aetiology and management are scarce.
Methods
The prospective pedCAPNETZ study multicentrically enrols children and adolescents with outpatient-treated or hospitalised paediatric CAP in Germany. Blood and respiratory specimens were collected systematically, and comprehensive analyses of pathogen spectra were conducted. Follow-up evaluations were performed until day 90 after enrolment.
Results
Between December 2014 and August 2020, we enrolled 486 children with paediatric CAP at eight study sites, 437 (89.9%) of whom had radiographic evidence of paediatric CAP. Median (interquartile range) age was 4.5 (1.6–6.6) years, and 345 (78.9%) children were hospitalised. The most prevalent symptoms at enrolment were cough (91.8%), fever (89.2%) and tachypnoea (62.0%). Outpatients were significantly older, displayed significantly lower C-reactive protein levels and were significantly more likely to be symptom-free at follow-up days 14 and 90. Pathogens were detected in 90.3% of all patients (one or more viral pathogens in 68.1%; one or more bacterial strains in 18.7%; combined bacterial/viral pathogens in 4.1%). Parainfluenza virus and Mycoplasma pneumoniae were significantly more frequent in outpatients. The proportion of patients with antibiotic therapy was comparably high in both groups (92.4% of outpatients versus 86.2% of hospitalised patients).
Conclusion
We present first data on paediatric CAP with comprehensive analyses in outpatients and hospitalised cases and demonstrate high detection rates of viral pathogens in both groups. Particularly in young paediatric CAP patients with outpatient care, antibiotic therapy needs to be critically debated