1 research outputs found

    Deep Learning Paradigms for Existing and Imminent Lung Diseases Detection: A Review

    Get PDF
    Diagnosis of lung diseases like asthma, chronic obstructive pulmonary disease, tuberculosis, cancer, etc., by clinicians rely on images taken through various means like X-ray and MRI. Deep Learning (DL) paradigm has magnified growth in the medical image field in current years. With the advancement of DL, lung diseases in medical images can be efficiently identified and classified. For example, DL can detect lung cancer with an accuracy of 99.49% in supervised models and 95.3% in unsupervised models. The deep learning models can extract unattended features that can be effortlessly combined into the DL network architecture for better medical image examination of one or two lung diseases. In this review article, effective techniques are reviewed under the elementary DL models, viz. supervised, semi-supervised, and unsupervised Learning to represent the growth of DL in lung disease detection with lesser human intervention. Recent techniques are added to understand the paradigm shift and future research prospects. All three techniques used Computed Tomography (C.T.) images datasets till 2019, but after the pandemic period, chest radiographs (X-rays) datasets are more commonly used. X-rays help in the economically early detection of lung diseases that will save lives by providing early treatment. Each DL model focuses on identifying a few features of lung diseases. Researchers can explore the DL to automate the detection of more lung diseases through a standard system using datasets of X-ray images. Unsupervised DL has been extended from detection to prediction of lung diseases, which is a critical milestone to seek out the odds of lung sickness before it happens. Researchers can work on more prediction models identifying the severity stages of multiple lung diseases to reduce mortality rates and the associated cost. The review article aims to help researchers explore Deep Learning systems that can efficiently identify and predict lung diseases at enhanced accuracy
    corecore