49 research outputs found
Inhibition of RNA Recruitment and Replication of an RNA Virus by Acridine Derivatives with Known Anti-Prion Activities
Small molecule inhibitors of RNA virus replication are potent antiviral drugs and useful to dissect selected steps in the replication process. To identify antiviral compounds against Tomato bushy stunt virus (TBSV), a model positive stranded RNA virus, we tested acridine derivatives, such as chlorpromazine (CPZ) and quinacrine (QC), which are active against prion-based diseases.Here, we report that CPZ and QC compounds inhibited TBSV RNA accumulation in plants and in protoplasts. In vitro assays revealed that the inhibitory effects of these compounds were manifested at different steps of TBSV replication. QC was shown to have an effect on multiple steps, including: (i) inhibition of the selective binding of the p33 replication protein to the viral RNA template, which is required for recruitment of viral RNA for replication; (ii) reduction of minus-strand synthesis by the tombusvirus replicase; and (iii) inhibition of translation of the uncapped TBSV genomic RNA. In contrast, CPZ was shown to inhibit the in vitro assembly of the TBSV replicase, likely due to binding of CPZ to intracellular membranes, which are important for RNA virus replication.Since we found that CPZ was also an effective inhibitor of other plant viruses, including Tobacco mosaic virus and Turnip crinkle virus, it seems likely that CPZ has a broad range of antiviral activity. Thus, these inhibitors constitute effective tools to study similarities in replication strategies of various RNA viruses
NMR solution structure and dynamics of the peptidylprolyl cis- trans lsomerase domain of the trigger factor from mycoplasma genitalium compared to FK506-binding protein
We have solved the solution structure of the peptidyl-prolyl cis-trans isomerase (PPIase) domain of the trigger factor from Mycoplasma genitalium by homo-and heteronuclear NMR spectroscopy. Our results lead to a well-defined structure with a backbone rmsd of 0.23 Angstrom. As predicted, the PPIase domain of the trigger factor adopts the FK506 binding protein (FKBP) fold. Furthermore, our NMR relaxation data indicate that the dynamic behavior of the trigger factor PPIase domain and of FKBP are similar. Structural variations when compared to FKBP exist in the flap region and within the bulges of strand 5 of the P sheet. Although the active-site crevice is similar to that of FKBP, subtle steric variations in this region can explain why FK506 does not bind to the trigger factor. Sequence variability (27% identity) between trigger factor and FKBP results in significant differences in surface charge distribution and the absence of the first strand of the central P sheet. Our data indicate, however, that this strand may be partially structured as "nascent" beta strand. This makes the trigger factor PPIase domain the most minimal representative of the FKBP like protein family of PPIases. (C) 2002 Elsevier Science Ltd. All rights reserved
NMR solution structure and dynamics of the peptidylprolyl cis- trans lsomerase domain of the trigger factor from mycoplasma genitalium compared to FK506-binding protein
We have solved the solution structure of the peptidyl-prolyl cis-trans isomerase (PPIase) domain of the trigger factor from Mycoplasma genitalium by homo-and heteronuclear NMR spectroscopy. Our results lead to a well-defined structure with a backbone rmsd of 0.23 Angstrom. As predicted, the PPIase domain of the trigger factor adopts the FK506 binding protein (FKBP) fold. Furthermore, our NMR relaxation data indicate that the dynamic behavior of the trigger factor PPIase domain and of FKBP are similar. Structural variations when compared to FKBP exist in the flap region and within the bulges of strand 5 of the P sheet. Although the active-site crevice is similar to that of FKBP, subtle steric variations in this region can explain why FK506 does not bind to the trigger factor. Sequence variability (27% identity) between trigger factor and FKBP results in significant differences in surface charge distribution and the absence of the first strand of the central P sheet. Our data indicate, however, that this strand may be partially structured as "nascent" beta strand. This makes the trigger factor PPIase domain the most minimal representative of the FKBP like protein family of PPIases. (C) 2002 Elsevier Science Ltd. All rights reserved