20 research outputs found

    Volume Rendering with Advanced GPU Scheduling Strategies

    No full text
    Modern GPUs are powerful enough to enable interactive display of high-quality volume data even despite the fact that many volume rendering methods do not present a natural fit for current GPU hardware. However, there still is a vast amount of computational power that remains unused due to the inefficient use of the available hardware. In this work, we demonstrate how advanced scheduling methods can be employed to implement volume rendering algorithms in a way that better utilizes the GPU by example of three different state-of-the-art volume rendering techniques

    RFA Guardian: Comprehensive Simulation of Radiofrequency Ablation Treatment of Liver Tumors

    Get PDF
    The RFA Guardian is a comprehensive application for high-performance patient-specific simulation of radiofrequency ablation of liver tumors. We address a wide range of usage scenarios. These include pre-interventional planning, sampling of the parameter space for uncertainty estimation, treatment evaluation and, in the worst case, failure analysis. The RFA Guardian is the first of its kind that exhibits sufficient performance for simulating treatment outcomes during the intervention. We achieve this by combining a large number of high-performance image processing, biomechanical simulation and visualization techniques into a generalized technical workflow. Further, we wrap the feature set into a single, integrated application, which exploits all available resources of standard consumer hardware, including massively parallel computing on graphics processing units. This allows us to predict or reproduce treatment outcomes on a single personal computer with high computational performance and high accuracy. The resulting low demand for infrastructure enables easy and cost-efficient integration into the clinical routine. We present a number of evaluation cases from the clinical practice where users performed the whole technical workflow from patient-specific modeling to final validation and highlight the opportunities arising from our fast, accurate prediction techniques

    A prospective development study of software-guided radio-frequency ablation of primary and secondary liver tumors: Clinical intervention modelling, planning and proof for ablation cancer treatment (ClinicIMPPACT)

    Get PDF
    Introduction: Radio-frequency ablation (RFA) is a promising minimal-invasive treatment option for early liver cancer, however monitoring or predicting the size of the resulting tissue necrosis during the RFA-procedure is a challenging task, potentially resulting in a significant rate of under-or over treatments. Currently there is no reliable lesion size prediction method commercially available.Objectives: ClinicIMPPACT is designed as multicenter-, prospective-, non-randomized clinical trial to evaluate the accuracy and efficiency of innovative planning and simulation software. 60 patients with early liver cancer will be included at four European clinical institutions and treated with the same RFA system. The pre-interventional imaging datasets will be used for computational planning of the RFA treatment. All ablations will be simulated simultaneously to the actual RFA procedure, using the software environment developed in this project. The primary outcome measure is the comparison of the simulated ablation zones with the true lesions shown in follow-up imaging after one month, to assess accuracy of the lesion prediction.Discussion: This unique multicenter clinical trial aims at the clinical integration of a dedicated software solution to accurately predict lesion size and shape after radiofrequency ablation of liver tumors. Accelerated and optimized workflow integration, and real-time intraoperative image processing, as well as inclusion of patient specific information, e.g. organ perfusion and registration of the real RFA needle position might make the introduced software a powerful tool for interventional radiologists to optimize patient outcomes

    Trim Regions for Online Computation of From-Region Potentially Visible Sets

    No full text
    International audienceVisibility computation is a key element in computer graphics applications. More specifically, a from-region potentially visible set (PVS) is an established tool in rendering acceleration, but its high computational cost means a from-region PVS is almost always precomputed. Precomputation restricts the use of PVS to static scenes and leads to high storage cost, in particular, if we need fine-grained regions. For dynamic applications, such as streaming content over a variable-bandwidth network, online PVS computation with configurable region size is required. We address this need with trim regions, a new method for generating from-region PVS for arbitrary scenes in real time. Trim regions perform controlled erosion of object silhouettes in image space, implicitly applying the shrinking theorem known from previous work. Our algorithm is the first that applies automatic shrinking to unconstrained 3D scenes, including non-manifold meshes, and does so in real time using an efficient GPU execution model. We demonstrate that our algorithm generates a tight PVS for complex scenes and outperforms previous online methods for from-viewpoint and from-region PVS. It runs at 60 Hz for realistic game scenes consisting of millions of triangles and computes PVS with a tightness matching or surpassing existing approaches

    RFA Guardian

    Get PDF
    The RFA Guardian is a comprehensive application for high-performance patient-specific simulation of radiofrequency ablation of liver tumors. We address a wide range of usage scenarios. These include pre-interventional planning, sampling of the parameter space for uncertainty estimation, treatment evaluation and, in the worst case, failure analysis. The RFA Guardian is the first of its kind that exhibits sufficient performance for simulating treatment outcomes during the intervention. We achieve this by combining a large number of high-performance image processing, biomechanical simulation and visualization techniques into a generalized technical workflow. Further, we wrap the feature set into a single, integrated application, which exploits all available resources of standard consumer hardware, including massively parallel computing on graphics processing units. This allows us to predict or reproduce treatment outcomes on a single personal computer with high computational performance and high accuracy. The resulting low demand for infrastructure enables easy and cost-efficient integration into the clinical routine. We present a number of evaluation cases from the clinical practice where users performed the whole technical workflow from patient-specific modeling to final validation and highlight the opportunities arising from our fast, accurate prediction techniques.Peer reviewe

    A prospective development study of software-guided radio-frequency ablation of primary and secondary liver tumors: Clinical intervention modelling, planning and proof for ablation cancer treatment (ClinicIMPPACT)

    No full text
    Introduction Radio-frequency ablation (RFA) is a promising minimal-invasive treatment option for early liver cancer, however monitoring or predicting the size of the resulting tissue necrosis during the RFA-procedure is a challenging task, potentially resulting in a significant rate of under- or over treatments. Currently there is no reliable lesion size prediction method commercially available. Objectives ClinicIMPPACT is designed as multicenter-, prospective-, non-randomized clinical trial to evaluate the accuracy and efficiency of innovative planning and simulation software. 60 patients with early liver cancer will be included at four European clinical institutions and treated with the same RFA system. The preinterventional imaging datasets will be used for computational planning of the RFA treatment. All ablations will be simulated simultaneously to the actual RFA procedure, using the software environment developed in this project. The primary outcome measure is the comparison of the simulated ablation zones with the true lesions shown in follow-up imaging after one month, to assess accuracy of the lesion prediction. Discussion This unique multicenter clinical trial aims at the clinical integration of a dedicated software solution to accurately predict lesion size and shape after radiofrequency ablation of liver tumors. Accelerated and optimized workflow integration, and real-time intraoperative image processing, as well as inclusion of patient specific information, e.g. organ perfusion and registration of the real RFA needle position might make the introduced software a powerful tool for interventional radiologists to optimize patient outcomes

    Software-based planning of ultrasound and CT-guided percutaneous radiofrequency ablation in hepatic tumors

    No full text
    Publisher Copyright: © 2021, The Author(s). Copyright: Copyright 2021 Elsevier B.V., All rights reserved.Objectives: Radiofrequency ablation (RFA) can be associated with local recurrences in the treatment of liver tumors. Data obtained at our center for an earlier multinational multicenter trial regarding an in-house developed simulation software were re-evaluated in order to analyze whether the software was able to predict local recurrences. Methods: Twenty-seven RFA ablations for either primary or secondary hepatic tumors were included. Colorectal liver metastases were shown in 14 patients and hepatocellular carcinoma in 13 patients. Overlap of the simulated volume and the tumor volume was automatically generated and defined as positive predictive value (PPV) and additionally visually assessed. Local recurrence during follow-up was defined as gold standard. Sensitivity and specificity were calculated using the visual assessment and gold standard. Results: Mean tumor size was 18 mm (95% CI 15–21 mm). Local recurrence occurred in 5 patients. The PPV of the simulation showed a mean of 0.89 (0.84–0.93 95% CI). After visual assessment, 9 incomplete ablations were observed, of which 4 true positives and 5 false positives for the detection of an incomplete ablation. The sensitivity and specificity were, respectively, 80% and 77% with a correct prediction in 78% of cases. No significant correlation was found between size of the tumor and PPV (Pearson Correlation 0.10; p = 0.62) or between PPV and recurrence rates (Pearson Correlation 0.28; p = 0.16). Conclusions: The simulation software shows promise in estimating the completeness of liver RFA treatment and predicting local recurrence rates, but could not be performed real-time. Future improvements in the field of registration could improve results and provide a possibility for real-time implementation.Peer reviewe

    GPU-based RFA simulation for minimally invasive cancer treatment of liver tumours

    No full text
    PURPOSE: Radiofrequency ablation (RFA) is one of the most popular and well-standardized minimally invasive cancer treatments (MICT) for liver tumours, employed where surgical resection has been contraindicated. Less-experienced interventional radiologists (IRs) require an appropriate planning tool for the treatment to help avoid incomplete treatment and so reduce the tumour recurrence risk. Although a few tools are available to predict the ablation lesion geometry, the process is computationally expensive. Also, in our implementation, a few patient-specific parameters are used to improve the accuracy of the lesion prediction. METHODS: Advanced heterogeneous computing using personal computers, incorporating the graphics processing unit (GPU) and the central processing unit (CPU), is proposed to predict the ablation lesion geometry. The most recent GPU technology is used to accelerate the finite element approximation of Penne's bioheat equation and a three state cell model. Patient-specific input parameters are used in the bioheat model to improve accuracy of the predicted lesion. RESULTS: A fast GPU-based RFA solver is developed to predict the lesion by doing most of the computational tasks in the GPU, while reserving the CPU for concurrent tasks such as lesion extraction based on the heat deposition at each finite element node. The solver takes less than 3 min for a treatment duration of 26 min. When the model receives patient-specific input parameters, the deviation between real and predicted lesion is below 3 mm. CONCLUSION: A multi-centre retrospective study indicates that the fast RFA solver is capable of providing the IR with the predicted lesion in the short time period before the intervention begins when the patient has been clinically prepared for the treatment

    A prospective development study of software-guided radio-frequency ablation of primary and secondary liver tumors: Clinical intervention modelling, planning and proof for ablation cancer treatment (ClinicIMPPACT)

    No full text
    Introduction: Radio-frequency ablation (RFA) is a promising minimal-invasive treatment option for early liver cancer, however monitoring or predicting the size of the resulting tissue necrosis during the RFA-procedure is a challenging task, potentially resulting in a significant rate of under- or over treatments. Currently there is no reliable lesion size prediction method commercially available. Objectives: ClinicIMPPACT is designed as multicenter-, prospective-, non-randomized clinical trial to evaluate the accuracy and efficiency of innovative planning and simulation software. 60 patients with early liver cancer will be included at four European clinical institutions and treated with the same RFA system. The preinterventional imaging datasets will be used for computational planning of the RFA treatment. All ablations will be simulated simultaneously to the actual RFA procedure, using the software environment developed in this project. The primary outcome measure is the comparison of the simulated ablation zones with the true lesions shown in follow-up imaging after one month, to assess accuracy of the lesion prediction. Discussion: This unique multicenter clinical trial aims at the clinical integration of a dedicated software solution to accurately predict lesion size and shape after radiofrequency ablation of liver tumors. Accelerated and optimized workflow integration, and real-time intraoperative image processing, as well as inclusion of patient specific information, e.g. organ perfusion and registration of the real RFA needle position might make the introduced software a powerful tool for interventional radiologists to optimize patient outcomes
    corecore