5 research outputs found
Regulation of LCoR and RIP140 expression in cervical intraepithelial neoplasia and correlation with CIN progression and dedifferentiation
Purpose!#!Ligand-dependent corepressor (LCoR) and receptor-interacting protein 140 (RIP140/NRIP1) play an important role in the regulation of multiple oncogenic signaling pathways and the development of cancer. LCoR and RIP140 form a nuclear complex in breast cancer cells and are of prognostic value in further prostate and cervical cancer. The purpose of this study was to analyze the regulation of these proteins in the development of cervical intraepithelial neoplasia (CIN I-III).!##!Methods!#!Immunohistochemical analysis was obtained to quantify RIP140 and LCoR expression in formalin-fixed paraffin embedded tissue sections of cervical intraepithelial neoplasia samples. Tissue (n = 94) was collected from patients treated in the Department of Gynecology and Obstetrics, Ludwig-Maximilians-University of Munich, Germany, between 2002 and 2014. Correlations of expression levels with clinical outcome were carried out to assess for prognostic relevance in patients with CIN2 progression. Kruskal-Wallis test and Mann-Whitney U test were used for data analysis.!##!Results!#!Nuclear LCoR overexpression correlates significantly with CIN II progression. Nuclear RIP140 expression significantly increases and nuclear LCoR expression decreases with higher grading of cervical intraepithelial neoplasia. Cytoplasmic RIP140 expression is significantly higher in CIN III than in CIN I or CIN II.!##!Conclusion!#!A decrease of nuclear LCoR expression in line with an increase of dedifferentiation of CIN can be observed. Nuclear LCoR overexpression correlates with CIN II progression indicating a prognostic value of LCoR in cervical intraepithelial neoplasia. Nuclear and cytoplasmic RIP140 expression increases significantly with higher grading of cervical intraepithelial neoplasia underlining its potential role in the development of pre-cancerous lesions. These findings support the relevance of LCoR and RIP140 in the tumorigenesis indicating a possible role of LCoR and RIP140 as targets for novel therapeutic approaches in cervical intraepithelial neoplasia and cervical cancer
Trace amine-associated receptor 1 (TAAR1) is a positive prognosticator for epithelial ovarian cancer
Trace amine-associated receptor 1 (TAAR1) is a Gαs- protein coupled receptor that plays an important role in the regulation of the immune system and neurotransmission in the CNS. In ovarian cancer cell lines, stimulation of TAAR1 via 3-iodothyronamine (T1AM) reduces cell viability and induces cell death and DNA damage. Aim of this study was to evaluate the prognostic value of TAAR1 on overall survival of ovarian carcinoma patients and the correlation of TAAR1 expression with clinical parameters. Ovarian cancer tissue of n = 156 patients who were diagnosed with epithelial ovarian cancer (serous, n = 110 (high-grade, n = 80; low-grade, n = 24; unknown, n = 6); clear cell, n = 12; endometrioid, n = 21; mucinous, n = 13), and who underwent surgery at the Department of Obstetrics and Gynecology, University Hospital of the Ludwig-Maximilians University Munich, Germany between 1990 and 2002, were analyzed. The tissue was stained immunohistochemically with anti-TAAR1 and evaluated with the semiquantitative immunoreactive score (IRS). TAAR1 expression was correlated with grading, FIGO and TNM-classification, and analyzed via the Spearman’s rank correlation coefficient. Further statistical analysis was obtained using nonparametric Kruskal-Wallis rank-sum test and Mann-Whitney-U-test. This study shows that high TAAR1 expression is a positive prognosticator for overall survival in ovarian cancer patients and is significantly enhanced in low-grade serous carcinomas compared to high-grade serous carcinomas. The influence of TAAR1 as a positive prognosticator on overall survival indicates a potential prognostic relevance of signal transduction of thyroid hormone derivatives in epithelial ovarian cancer. Further studies are required to evaluate TAAR1 and its role in the development of ovarian cancer
Identification of the Product of Photoswitching of an Oxazine Fluorophore Using Fourier Transform Infrared Difference Spectroscopy
Kottke T, van de Linde S, Sauer M, Kakorin S, Heilemann M. Identification of the Product of Photoswitching of an Oxazine Fluorophore Using Fourier Transform Infrared Difference Spectroscopy. JOURNAL OF PHYSICAL CHEMISTRY LETTERS. 2010;1(21):3156-3159