20,031 research outputs found
High electrical resistivity carbon/graphite fibers
Carbon/graphite fibers were chemically oxidized in the liquid phase to fibers of graphite oxide. Resistivity increases as high as 10,000 times were obtained, the oxidized fiber decomposed on exposure to atmosphere. A factor of 1,000 remained as a stable increment. The largest change observed was 1,000,000 times. Best results were obtained on the most highly graphitized fibers. Electrochemical oxidation yielded a lower increase--about 10 times, but provided a controllable method of synthesis and insight to the mechanism of reaction. Tensile tests indicated that the strength of the fiber on oxidation was decreased by no more than 25 percent
Caging dynamics in a granular fluid
We report an experimental investigation of the caging motion in a uniformly
heated granular fluid, for a wide range of filling fractions, . At low
the classic diffusive behavior of a fluid is observed. However, as
is increased, temporary cages develop and particles become increasingly
trapped by their neighbors. We statistically analyze particle trajectories and
observe a number of robust features typically associated with dense molecular
liquids and colloids. Even though our monodisperse and quasi-2D system is known
to not exhibit a glass transition, we still observe many of the precursors
usually associated with glassy dynamics. We speculate that this is due to a
process of structural arrest provided, in our case, by the presence of
crystallization.Comment: 4 pages, 5 figures, submitted to Phys. Rev. Let
Plastic-crystalline solid-state electrolytes: Ionic conductivity and orientational dynamics in nitrile mixtures
Many plastic crystals, molecular solids with long-range, center-of-mass
crystalline order but dynamic disorder of the molecular orientations, are known
to exhibit exceptionally high ionic conductivity. This makes them promising
candidates for applications as solid-state electrolytes, e.g., in batteries.
Interestingly, it was found that the mixing of two different
plastic-crystalline materials can considerably enhance the ionic dc
conductivity, an important benchmark quantity for electrochemical applications.
An example is the admixture of different nitriles to succinonitrile, the latter
being one of the most prominent plastic-crystalline ionic conductors. However,
until now only few such mixtures were studied. In the present work, we
investigate succinonitrile mixed with malononitrile, adiponitrile, and
pimelonitrile, to which 1 mol% of Li ions were added. Using differential
scanning calorimetry and dielectric spectroscopy, we examine the phase behavior
and the dipolar and ionic dynamics of these systems. We especially address the
mixing-induced enhancement of the ionic conductivity and the coupling of the
translational ionic mobility to the molecular reorientational dynamics,
probably arising via a "revolving-door" mechanism.Comment: 9 pages, 7 figures; revised version as accepted for publication in J.
Chem. Phy
Energy shifts of K x-ray lines for different chemical compounds of Ru, Pr, and Yb
The energy shifts of Kα2, Kα1, Kβ3, Kβ1, and Kβ2 x rays were measured for the following Ru, Pr, and Yb compounds: Ru, Ru(CO2)Cl2, RuO2, [Ru(NH3)4OHCl]Cl · 2H2O, and RuF3; Pr, PrC2, Pr2O3, PrFeO3, Pr6O11, PrO2, CsPrF5, and Cs2PrF6, Yb, YbF3, and Yb2O3. The results are compared with free-ion relativistic self-consistent-field calculations. The measurements bear out the dominant role of the 4f electrons in energy shifts between the trivalent and tetravalent Pr and the divalent and trivalent Yb. In Yb the full free-ion value is observed, while in Pr the free-ion value appears to be attenuated by a factor of 0.4, presumably owing to covalency. In all cases the relation of the x-ray energy shift to the Mössbauer isomer shift is discussed
Apollo experience report: Assessment of metabolic expenditures
A significant effort was made to assess the metabolic expenditure for extravehicular activity on the lunar surface. After evaluation of the real-time data available to the flight controller during extravehicular activity, three independent methods of metabolic assessment were chosen based on the relationship between heart rate and metabolic production, between oxygen consumption and metabolic production, and between the thermodynamics of the liquid-cooled garment and metabolic production. The metabolic assessment procedure is analyzed and discussed. Real-time use of this information by the Apollo flight surgeon is discussed. Results and analyses of the Apollo missions and comments concerning future applications are included
Influence of topography and Co domain walls on the magnetization reversal of the FeNi layer in FeNi/AlO/Co magnetic tunnel junctions
We have studied the magnetization reversal dynamics of FeNi/AlO/Co
magnetic tunnel junctions deposited on step-bunched Si substrates using
magneto-optical Kerr effect and time-resolved x-ray photoelectron emission
microscopy combined with x-ray magnetic circular dichroism (XMCD-PEEM).
Different reversal mechanisms have been found depending on the substrate miscut
angle. Larger terraces (smaller miscut angles) lead to a higher nucleation
density and stronger domain wall pinning. The width of domain walls with
respect to the size of the terraces seems to play an important role in the
reversal. We used the element selectivity of XMCD-PEEM to reveal the strong
influence of the stray field of domain walls in the hard magnetic layer on the
magnetic switching of the soft magnetic layer.Comment: 8 Pages, 7 Figure
The Ising M-p-spin mean-field model for the structural glass: continuous vs. discontinuous transition
The critical behavior of a family of fully connected mean-field models with
quenched disorder, the Ising spin glass, is analyzed, displaying a
crossover between a continuous and a random first order phase transition as a
control parameter is tuned. Due to its microscopic properties the model is
straightforwardly extendable to finite dimensions in any geometry.Comment: 10 pages, 1 figure, 1 tabl
Mass Hierarchy Determination Using Neutrinos from Multiple Reactors
We report the results of Monte Carlo simulations of a medium baseline reactor
neutrino experiment. The difference in baselines resulting from the 1 km
separations of Daya Bay and Ling Ao reactors reduces the amplitudes of 1-3
oscillations at low energies, decreasing the sensitivity to the neutrino mass
hierarchy. A perpendicular detector location eliminates this effect. We
simulate experiments under several mountains perpendicular to the Daya Bay/Ling
Ao reactors, considering in particular the background from the TaiShan and
YangJiang reactor complexes. In general the hierarchy can be determined most
reliably underneath the 1000 meter mountain BaiYunZhang, which is 44.5 km from
Daya Bay. If some planned reactors are not built then nearby 700 meter
mountains at 47-51 km baselines gain a small advantage. Neglecting their low
overhead burdens, hills near DongKeng would be the optimal locations. We use a
weighted Fourier transform to avoid a spurious dependence on the high energy
neutrino spectrum and find that a neural network can extract quantities which
determine the hierarchy marginally better than the traditional RL + PV.Comment: 22 pages, added details on the neural network (journal version
Muonium-Antimuonium Oscillations in an extended Minimal Supersymmetric Standard Model with right-handed neutrinos
The electron and muon number violating muonium-antimuonium oscillation
process in an extended Minimal Supersymmetric Standard Model is investigated.
The Minimal Supersymmetric Standard Model is modified by the inclusion of three
right-handed neutrino superfields. While the model allows the neutrino mass
terms to mix among the different generations, the sneutrino and slepton mass
terms have only intra-generation lepton number violation but not
inter-generation lepton number mixing. So doing, the muonium-antimuonium
conversion can then be used to constrain those model parameters which avoid
further constraint from the decay bounds. For a wide range of
parameter values, the contributions to the muonium-antimuonium oscillation time
scale are at least two orders of magnitude below the sensivity of current
experiments. However, if the ratio of the two Higgs field VEVs, , is
very small, there is a limited possibility that the contributions are large
enough for the present experimental limit to provide an inequality relating
with the light neutrino mass scale which is generated by
see-saw mechanism. The resultant lower bound on as a function of
is more stringent than the analogous bounds arising from the muon and
electron anomalous magnetic moments as computed using this model.Comment: 29 pages, 7 figures, 3 tables, Late
Cavity-assisted spontaneous emission as a single-photon source: Pulse shape and efficiency of one-photon Fock state preparation
Within the framework of exact quantum electrodynamics in dispersing and
absorbing media, we have studied the quantum state of the radiation emitted
from an initially in the upper state prepared two-level atom in a high-
cavity, including the regime where the emitted photon belongs to a wave packet
that simultaneously covers the areas inside and outside the cavity. For both
continuing atom--field interaction and short-term atom--field interaction, we
have determined the spatio-temporal shape of the excited outgoing wave packet
and calculated the efficiency of the wave packet to carry a one-photon Fock
state. Furthermore, we have made contact with quantum noise theories where the
intracavity field and the field outside the cavity are regarded as
approximately representing independent degrees of freedom such that two
separate Hilbert spaces can be introduced.Comment: 16 pages, 7 eps figures; improved version as submitted to Phys. Rev.
- …