22,580 research outputs found
Methods for predicting thermal stress cracking in turbine stator or rotor blades Summary report
Test rig for predicting thermal stress cracking in turbine stator or rotor blade
Quaternions, octonions and Bell-type inequalities
Multipartite Bell-type inequalities are derived for general systems. They
involve up to eight observables with arbitrary spectra on each site. These
inequalities are closely related to the algebras of quaternions and octonions.Comment: 4 pages, no figure
Universal measurement of quantum correlations of radiation
A measurement technique is proposed which, in principle, allows one to
observe the general space-time correlation properties of a quantized radiation
field. Our method, called balanced homodyne correlation measurement, unifies
the advantages of balanced homodyne detection with those of homodyne
correlation measurements.Comment: 4 pages, 4 figures, small misprints were corrected, accepted to Phys.
Rev. Let
Cavity-assisted spontaneous emission as a single-photon source: Pulse shape and efficiency of one-photon Fock state preparation
Within the framework of exact quantum electrodynamics in dispersing and
absorbing media, we have studied the quantum state of the radiation emitted
from an initially in the upper state prepared two-level atom in a high-
cavity, including the regime where the emitted photon belongs to a wave packet
that simultaneously covers the areas inside and outside the cavity. For both
continuing atom--field interaction and short-term atom--field interaction, we
have determined the spatio-temporal shape of the excited outgoing wave packet
and calculated the efficiency of the wave packet to carry a one-photon Fock
state. Furthermore, we have made contact with quantum noise theories where the
intracavity field and the field outside the cavity are regarded as
approximately representing independent degrees of freedom such that two
separate Hilbert spaces can be introduced.Comment: 16 pages, 7 eps figures; improved version as submitted to Phys. Rev.
Caging dynamics in a granular fluid
We report an experimental investigation of the caging motion in a uniformly
heated granular fluid, for a wide range of filling fractions, . At low
the classic diffusive behavior of a fluid is observed. However, as
is increased, temporary cages develop and particles become increasingly
trapped by their neighbors. We statistically analyze particle trajectories and
observe a number of robust features typically associated with dense molecular
liquids and colloids. Even though our monodisperse and quasi-2D system is known
to not exhibit a glass transition, we still observe many of the precursors
usually associated with glassy dynamics. We speculate that this is due to a
process of structural arrest provided, in our case, by the presence of
crystallization.Comment: 4 pages, 5 figures, submitted to Phys. Rev. Let
Plastic-crystalline solid-state electrolytes: Ionic conductivity and orientational dynamics in nitrile mixtures
Many plastic crystals, molecular solids with long-range, center-of-mass
crystalline order but dynamic disorder of the molecular orientations, are known
to exhibit exceptionally high ionic conductivity. This makes them promising
candidates for applications as solid-state electrolytes, e.g., in batteries.
Interestingly, it was found that the mixing of two different
plastic-crystalline materials can considerably enhance the ionic dc
conductivity, an important benchmark quantity for electrochemical applications.
An example is the admixture of different nitriles to succinonitrile, the latter
being one of the most prominent plastic-crystalline ionic conductors. However,
until now only few such mixtures were studied. In the present work, we
investigate succinonitrile mixed with malononitrile, adiponitrile, and
pimelonitrile, to which 1 mol% of Li ions were added. Using differential
scanning calorimetry and dielectric spectroscopy, we examine the phase behavior
and the dipolar and ionic dynamics of these systems. We especially address the
mixing-induced enhancement of the ionic conductivity and the coupling of the
translational ionic mobility to the molecular reorientational dynamics,
probably arising via a "revolving-door" mechanism.Comment: 9 pages, 7 figures; revised version as accepted for publication in J.
Chem. Phy
Illumination in symbiotic binary stars: Non-LTE photoionization models. II. Wind case
We describe a non-LTE photoionization code to calculate the wind structure
and emergent spectrum of a red giant wind illuminated by the hot component of a
symbiotic binary system. We consider spherically symmetric winds with several
different velocity and temperature laws and derive predicted line fluxes as a
function of the red giant mass loss rate, \mdot. Our models generally match
observations of the symbiotic stars EG And and AG Peg for \mdot about 10^{-8}
\msunyr to 10^{-7} \msunyr. The optically thick cross- section of the red giant
wind as viewed from the hot component is a crucial parameter in these models.
Winds with cross-sections of 2--3 red giant radii reproduce the observed
fluxes, because the wind density is then high, about 10^9 cm^{-3}. Our models
favor winds with acceleration regions that either lie far from the red giant
photosphere or extend for 2--3 red giant radii.Comment: 51 pages, LaTeX including three tables, requires 15 Encapsulated
Postscript figures, to appear in Ap
Apollo experience report: Assessment of metabolic expenditures
A significant effort was made to assess the metabolic expenditure for extravehicular activity on the lunar surface. After evaluation of the real-time data available to the flight controller during extravehicular activity, three independent methods of metabolic assessment were chosen based on the relationship between heart rate and metabolic production, between oxygen consumption and metabolic production, and between the thermodynamics of the liquid-cooled garment and metabolic production. The metabolic assessment procedure is analyzed and discussed. Real-time use of this information by the Apollo flight surgeon is discussed. Results and analyses of the Apollo missions and comments concerning future applications are included
The Ising M-p-spin mean-field model for the structural glass: continuous vs. discontinuous transition
The critical behavior of a family of fully connected mean-field models with
quenched disorder, the Ising spin glass, is analyzed, displaying a
crossover between a continuous and a random first order phase transition as a
control parameter is tuned. Due to its microscopic properties the model is
straightforwardly extendable to finite dimensions in any geometry.Comment: 10 pages, 1 figure, 1 tabl
Density of critical points for a Gaussian random function
Critical points of a scalar quantitiy are either extremal points or saddle
points. The character of the critical points is determined by the sign
distribution of the eigenvalues of the Hessian matrix. For a two-dimensional
homogeneous and isotropic random function topological arguments are sufficient
to show that all possible sign combinations are equidistributed or with other
words, the density of the saddle points and extrema agree. This argument breaks
down in three dimensions. All ratios of the densities of saddle points and
extrema larger than one are possible. For a homogeneous Gaussian random field
one finds no longer an equidistribution of signs, saddle points are slightly
more frequent.Comment: 11 pages 1 figure, changes in list of references, corrected typo
- …