5 research outputs found

    Tandem catalysis in multicomponent solvent-free biofluids

    Get PDF
    Enzymes are widely employed to reduce the environmental impact of chemical industries as biocatalysts improve productivity and offer high selectively under mild reaction conditions in a diverse range of chemical transformations. The poor stability of biomacromolecules under reaction conditions is often a critical bottleneck to their application. Protein engineering or immobilization onto solid substrates may remedy this limitation but, unfortunately, this is often at the expense of catalytic potency or substrate specificity. In this work, we show that the combinatorial approach of chemical modification and supramolecular nanoencapsulation can endow mechanistically diverse enzymes with apparent extremophilic behavior. A protein-polymer surfactant core-shell architecture facilitates construction of increasingly complex biofluids from individual biosynthetic components, each of which retain biological activity at hydration levels almost two orders of magnitude below solvation. The herein constructed multifunctional biofluids operate in tandem up to 150 °C and in the total absence of solvent under apparent diffusional mass-transport limitation. The biosynthetic promotion of extremophilic traits for enzymes with diverse catalytic motions and chemical functions highlights the extraordinary capacity for a viscous surfactant milieu to replace both hydration and bulk waters

    Micellization of a weakly charged surfactant in aqueous salt solution: self-consistent field theory and experiments

    No full text
    Self-consistent field (SCF) calculations and light scattering experiments were performed to study the pH and salt response of micelles composed of surfactants with a single weak acid group in aqueous salt solution. To this end, the common surfactant Brij 35 was oxidized to yield a polyoxyethylene alkyl ether carboxylic acid with a single terminal weakly charged carboxylic acid group in alkaline media. At low pH values, the micellar hydrodynamic radii (Rh) are independent of the salt concentration. By contrast, at pH values around the acid dissociation constant (pH ≈ pKa ± 1), the micellar radius decreases upon increasing pH until a salt-dependent plateau value is reached. The reduction in micellar size is more pronounced for lower salt concentrations. The SCF computations are in qualitative agreement with the experimental results and further reveal a limiting value for Rh corresponding approximately to the Debye length λD. Self-assembly into micelles is suppressed for low salt concentrations that would yield Rh < λD. Instead, the surfactants remain as unimers in solution. The results are summarized in a state diagram displaying the preferred surfactant configuration in solution as a function of Rh/λD, pH and salt concentration

    Micellization of a weakly charged surfactant in aqueous salt solution : Self-consistent field theory and experiments

    Get PDF
    Self-consistent field (SCF) calculations and light scattering experiments were performed to study the pH and salt response of micelles composed of surfactants with a single weak acid group in aqueous salt solution. To this end, the common surfactant Brij 35 was oxidized to yield a polyoxyethylene alkyl ether carboxylic acid with a single terminal weakly charged carboxylic acid group in alkaline media. At low pH values, the micellar hydrodynamic radii (Rh) are independent of the salt concentration. By contrast, at pH values around the acid dissociation constant (pH ≈ pKa ± 1), the micellar radius decreases upon increasing pH until a salt-dependent plateau value is reached. The reduction in micellar size is more pronounced for lower salt concentrations. The SCF computations are in qualitative agreement with the experimental results and further reveal a limiting value for Rh corresponding approximately to the Debye length λD. Self-assembly into micelles is suppressed for low salt concentrations that would yield Rh < λD. Instead, the surfactants remain as unimers in solution. The results are summarized in a state diagram displaying the preferred surfactant configuration in solution as a function of Rh/λD, pH and salt concentration

    Fractal-like R5 assembly promote the condensation of silicic acid into silica particles

    No full text
    HYPOTHESIS: Despite advances in understanding the R5 (SSKKSGSYSGKSGSKRRIL) peptide-driven bio-silica process, there remains significant discrepancies regarding the physicochemical characterization and the self-assembling mechanistic driving forces of the supramolecular R5 template. This paper investigates the self-assembly of R5 as a function of monovalent (sodium chloride) and multivalent salt (phosphate) to determine if assembly is phosphate ion concentration dependent. Additionally, we hypothesize that the assembled R5 aggregates do not resemble a micelle or unimer structure as proposed in current literature. EXPERIMENTS: R5 peptides were synthesized, and aggregates evaluated for their size, morphology, and association state as a function of salt and ionic strength concentration via dynamic and static light scattering, small angle X-ray and neutron scattering and cryogenic transmission electron microscopy. Furthermore, we compare the proposed R5 template to precipitated silica by scanning electron microscopy. FINDINGS: R5 peptides assemble into large aggregates due to multivalence bridging and the decrease in electrostatic repulsion due to ionic strength. We elucidate the structure of R5 aggregates as mass-fractals composed of small spherical aggregates. Moreover, we discover that phosphate ions not only have a significant role in driving the growth of the R5 scaffold, but additionally in driving the polycondensation of silicic acid during the bio-silification process via electrostatic interactions
    corecore