48 research outputs found

    Printing sub-micron structures using Talbot mask-aligner lithography with a 193 nm CW laser light source

    Get PDF
    A continuous improvement of resolution in mask-aligner lithography is sought after to meet the requirements of an ever decreasing minimum feature size in back-end processes. For periodic structures, utilizing the Talbot effect for lithography has emerged as a viable path. Here, by combining the Talbot effect with a continuous wave laser source emitting at 193 nm, we demonstrate successfully the fabrication of periodic arrays in silicon substrates with sub-micron feature sizes. The excellent coherence and the superior brilliance of this light source, compared to more traditional mercury lamps and excimer lasers as light source, enables the efficient beam shaping and a reduced minimum feature size at a fixed gap of 20 μm. We present a comprehensive study of proximity printing with this system, including simulations and selected experimental results of prints in up to the fourth Talbot plane. This printing technology can be used to manufacture optical metasurfaces, bio-sensor arrays, membranes, or microchannel plates

    Improved calibration of vertical scanning optical profilometers for spherical profiles measurements

    Get PDF
    A new method for calibrating optical scanning profilometers is presented. Especially adapted to spherical and aspherical profile measurements, it shows an increase of accuracy bigger than one order of magnitude for radius of curvature measurements. Calibration of vertical scaling is obtained with a reduction of its uncertainty by a factor larger than 2, which also demonstrates the advantage of this method for any surface measurements. Using commercially available reference balls, this method is easily implementabl

    Two step process for the fabrication of diffraction limited concave microlens arrays

    Get PDF
    A two step process has been developed for the fabrication of diffraction limited concave microlens arrays. The process is based on the photoresist filling of melted holes obtained by a preliminary photolithography step. The quality of these microlenses has been tested in a Mach- Zehnder interferometer. The method allows the fabrication of concave microlens arrays with diffraction limited optical performance. Concave microlenses with diameters ranging between 30 μm to 230 μm and numerical apertures up to 0.25 have been demonstrated. As an example, we present the realization of diffusers obtained with random sizes and locations of concave shapes. © 2008 Optical Society of America OCIS codes: (130.0130) Integrated optics, (220.0220) Optical design and fabrication

    Assessing microlens quality based on 3D irradiance measurement at the focal spot area

    Get PDF
    During the fabrication process of microlenses, characterization is essential for two purposes: evaluate the optical quality of the element and provide surface information feedback for process optimization. However, no technique can fulfill these two objectives at the same time. Interferometry is used for quality evaluation and optical profilometry for process optimization. In order to address this problem, we propose to use a high resolution interference microscope to characterize microlenses. The focusing capacity can be directly measured by recording the field near the focal spot at different wavelengths. Information about the microlens surface can also be retrieved. All this is illustrated for the front focus of a fused-silica microlens

    Printing sub-micron structures using Talbot mask-aligner lithography with a 193 nm CW laser light source

    Get PDF
    A continuous improvement of resolution in mask-aligner lithography is sought after to meet the requirements of an ever decreasing minimum feature size in back-end processes. For periodic structures, utilizing the Talbot effect for lithography has emerged as a viable path. Here, by combining the Talbot effect with a continuous wave laser source emitting at 193 nm, we demonstrate successfully the fabrication of periodic arrays in silicon substrates with sub-micron feature sizes. The excellent coherence and the superior brilliance of this light source, compared to more traditional mercury lamps and excimer lasers as light source, enables the efficient beam shaping and a reduced minimum feature size at a fixed gap of 20 µm. We present a comprehensive study of proximity printing with this system, including simulations and selected experimental results of prints in up to the fourth Talbot plane. This printing technology can be used to manufacture optical metasurfaces, bio-sensor arrays, membranes, or microchannel plates

    High numerical aperture silicon collimating lens for mid-infrared quantum cascade lasers manufactured using wafer-level techniques

    Get PDF
    We present an aspheric collimating lens for mid-infrared (4-14 µ) quantum cascade lasers. The lenses were etched into silicon by an inductively coupled plasma reactive ion etching system on wafer level. The high refractive index of silicon reduces the height of the lens prole resulting in a simple element working at high numerical aperture (up to 0.82). Wafer level processes enable the fabrication of about 5000 lenses in parallel. Such cost-eective collimating lens is a step towards the adoption of quantum cascade lasers for all its potential applications

    Enabling proximity mask-aligner lithography with a 193nm CW light source

    Get PDF
    We introduce a novel industrial grade 193nm continuous-wave laser light source for proximity mask-aligner lithography. A diode seed laser in master-oscillator power-amplification configuraton is frequency-quadrupled using lithiumtriborate and potassium-fluoro-beryllo-borate non-linear crystals. The large coherence-length of this monomodal laser is controlled by static and rotating shaped random diffusers. Beam shaping with imaging and non-imaging homogenizers realized with diffractive and refractive micro-optical elements is compared in simulation and measurement. We demonstrate resolution patterns offering resolutions <2 µm printed with proximity gaps of 20 µm

    Mask-aligner Talbot lithography using a 193 nm CW light source

    Get PDF
    We present and discuss Talbot mask-aligner lithography, relying on a continuous wave laser emitting at 193nm for the illumination. In this source, a diode laser at 772nm is amplified by a tapered amplifier in master-oscillator power-amplifier configuration and frequency-quadrupled in two subsequent enhancement cavities using lithium triborate and potassium fluoro-beryllo-borate nonlinear crystals to generate the emission at 193 nm. The high coherence and brilliance of such an illumination source is predestined for plane wave mask-aligner illumination, crucial in particular for high-resolution lithographic techniques such as Talbot lithography and phase-shift masks. Talbot lithography takes advantage of the diffraction effect to image periodic mask features via self-replication in multiples of the Talbot distance behind the photomask when exposed by a plane wave. By placing a photoresistcoated wafer in one of the Talbot planes, the mask pattern is replicated in the resist. Periodic patterns with diverse shapes are required for wire grid polarizers, diffraction gratings, and hole arrays in photonic applications as well as for filters and membranes. Using an amplitude mask with periodic structures, we demonstrate here with such a technique sub-micron feature sizes for various designs at a proximity gap of 20 µm
    corecore