36 research outputs found
Nanoscale Metallic Iron for Environmental Remediation: Prospects and Limitations
The amendment of the subsurface with nanoscale metallic iron particles
(nano-Fe0) has been discussed in the literature as an efficient in situ
technology for groundwater remediation. However, the introduction of this
technology was controversial and its efficiency has never been univocally
established. This unsatisfying situation has motivated this communication whose
objective was a comprehensive discussion of the intrinsic reactivity of
nano-Fe0 based on the contemporary knowledge on the mechanism of contaminant
removal by Fe0 and a mathematical model. It is showed that due to limitations
of the mass transfer of nano-Fe0 to contaminants, available concepts cannot
explain the success of nano-Fe0 injection for in situ groundwater remediation.
It is recommended to test the possibility of introducing nano-Fe0 to initiate
the formation of roll-fronts which propagation would induce the reductive
transformation of both dissolved and adsorbed contaminants. Within a
roll-front, FeII from nano-Fe0 is the reducing agent for contaminants. FeII is
recycled by biotic or abiotic FeIII reduction. While the roll-front concept
could explain the success of already implemented reaction zones, more research
is needed for a science-based recommendation of nano- Fe0 for subsurface
treatment by roll-front