2,419 research outputs found

    The influence of spin-dependent phases of tunneling electrons on the conductance of a point ferromagnet/isolator/d-wave superconductor contact

    Full text link
    The influence of phase shifts of electron waves passing through and reflected by the potential barrier on the Andreev reflection in a ferromagnet/isolator/d-wave superconductor (FIS) contact is studied. It is found that in a superconductor the surface spin-dependent Andreev bound states inside the superconducting gap are formed as a result of the interference of electron-like and hole-like quasiparticles due to repeated Andreev reflections. The peak in the conductance of the FIS contact at the zero potential for the (110)-oriented superconductor disappears rapidly as the polarization of a ferromagnet increases, whereas for the (100)-oriented superconductor it appears. The physical reason for this behavior of conductance is discussed.Comment: 8 pages, 4 figure

    Grating tunable 4-14 mu m GaAs optical parametric oscillator pumped at 3 mu m

    Get PDF
    We demonstrate a broadly and continuously tunable optical parametric oscillator (OPO) based on orientation-patterned GaAs (OP-GaAs) operating at 2 kHz repetition rate. With the choice of the pump wavelength near lambda = 3 mu m, we were able to achieve tunable output in the whole range of 4-14.2 mu m with a linewidth between 2 and 6 cm(-1), using a single OP-GaAs structure with a domain reversal period of 150 mu m. The OPO output was tuned using (i) an intracavity diffraction grating, and (ii) fine adjustment of the pump wavelength near 3 mu m. In certain portions of the spectrum this system potentially allows fast (sub-millisecond scale) wavelength tuning over \u3e 2500 nm by fast steering the diffraction grating at a fixed pump wavelength

    High power and spectral purity continuous-wave photonic THz source tunable from 1 to 4.5 THz for nonlinear molecular spectroscopy

    Get PDF
    We report a diffraction-limited photonic terahertz (THz) source with linewidth \u3c 10 MHz that can be used for nonlinear THz studies in the continuous wave (CW) regime with uninterrupted tunability in a broad range of THz frequencies. THz output is produced in orientation-patterned (OP) gallium arsenide (GaAs) via intracavity frequency mixing between the two closely spaced resonating signal and idler waves of an optical parametric oscillator (OPO) operating near lambda = 2 mu m. The doubly resonant type II OPO is based on a periodically poled lithium niobate (PPLN) pumped by a single-frequency Yb:YAG disc laser at 1030 nm. We take advantage of the enhancement of both optical fields inside a high-finesse OPO cavity: with 10 W of 1030 nm pump, 100 W of intracavity power near 2 mu m was attained with GaAs inside cavity. This allows dramatic improvement in terms of generated THz power, as compared to the state-of-the art CW methods. We achieved \u3e 25 mu W of single-frequency tunable CW THz output power scalable to \u3e 1 mW with proper choice of pump laser wavelength

    Re-entrant superconductivity in Nb/Cu(1-x)Ni(x) bilayers

    Full text link
    We report on the first observation of a pronounced re-entrant superconductivity phenomenon in superconductor/ferromagnetic layered systems. The results were obtained using a superconductor/ferromagnetic-alloy bilayer of Nb/Cu(1-x)Ni(x). The superconducting transition temperature T_{c} drops sharply with increasing thickness d_{CuNi} of the ferromagnetic layer, until complete suppression of superconductivity is observed at d_{CuNi}= 4 nm. Increasing the Cu(1-x)Ni(x) layer thickness further, superconductivity reappears at d_{CuNi}=13 nm. Our experiments give evidence for the pairing function oscillations associated with a realization of the quasi-one dimensional Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) like state in the ferromagnetic layer.Comment: 3 pages, 3 figures, REVTEX4/twocolum

    Measurements of the group delay and the group delay dispersion with resonance scanning interferometer

    Get PDF
    We developed a method for group delay and group delay dispersion measurements, based on location of interference resonance peaks. Such resonance peaks can be observed in transmittance or in reflectance when two mirrors are placed parallel to each other and separated by a thin air spacer. By using a novel approach, based on simultaneous processing of the data acquired for different spacer distances we obtained reliable results with high resolution. Measurements were performed both in transmittance and reflectance layouts depending on the reflectivity of the mirror to be measured. The developed method allows dispersion measurements of ultraviolet mirrors and ultra-broadband mirrors spanning more than one optical octave to be performed

    The influence of spin-dependent phases of tunneling electrons on the conductance of a point ferromagnet/isolator/superconductor contact

    Full text link
    The Andreev reflection probability for a ferromagnet/isolator/superconductor (FIS) contact at the arbitrary spin-dependent amplitudes of the electron waves transmitted through and reflected from the potential barrier is found. It is shown that Andreev reflection probabilities of electron and hole excitations in the FIS contact are different. The energy levels of Andreev bound states are found. The ballistic conductance of the point FIS contact is calculated.Comment: e.g.:10 pages, 3 figures added in tex. file: abstract and article's titl

    Probing of X, Y, Z exotics with hadron and heavy ion collisions

    Get PDF
    The possibility of selected studies of heavy exotic hadrons called X, Y, Z states is considered. The topic includes detailed analysis of their strong, weak and electromagnetic decays containing cc¯ pair, physics simulations and event reconstruction at NICA facilit

    Design and Status of the Dipole Spectrometer Magnet for the ALICE Experiment

    Get PDF
    Proposal of abstract for MT16, Tallahesse, Florida, 26th September to 2nd October 1999.A large Dipole Magnet is required for the Muon Arm Spectrometer of the ALICE experiment at the LHC.The absence of strong requirements on the symmetry and homogeneity of the magnetic field has lead to a design dominated by economic and feasibility considerations.In March 1997 the decision was taken to build a resistive dipole magnet for the muon spectrometer of the ALICE experiment. Since then, design work has been pursued in JINR/Russia and at CERN. While a common concept has been adopted for the construction of the steel core, two different proposals have been made for the manufacturing technology of the excitation coils. In both cases, however, the conductor material will be Aluminium.The general concept of the dipole magnet is based on a window frame return yoke, fabricated from low carbon steel sheets. The flat vertical poles follow the defined acceptance angle of 9 degrees. The excitation coils are of saddle type. The coils are wound from large hollow Aluminium profiles. They are cooled by pressurized demineralised water. The coil ends are located to both sides of the magnet yoke and determine the overall length of the magnet. The main flux direction in the gap is horizontal and perpendicular to the LHC beam axis.Both coil concepts and the underlying manufacturing technology are compared and the present status of the development of the magnet is described
    • …
    corecore