7 research outputs found

    Experimental verification of the efficiency of selective non-catalytic reduction in a bubbling fluidized bed combustor

    Get PDF
    Controlling nitrogen oxide (NOX) emissions is still a challenge as increasingly stringent emission limits are introduced. Strict regulations will lead to the need to introduce secondary measures even for boilers with bubbling fluidized bed (BFB), which are generally characterized by low NOX emissions. Selective non-catalytic reduction has lower investment costs compared to other secondary measures for NOX reduction, but the temperatures for its efficient utilization are difficult to achieve in BFBs. This paper studies the possibility of an effective application of selective non-catalytic reduction (SNCR) of nitrogen oxides in a pilot-scale facility with a bubbling fluidized bed. The effect of temperatures between 880 and 950 °C in the reagent injection zone on NOX reduction was investigated. For the selected temperature, the effect of the amount of injected reagent, urea solution with concentration 32.5%wt., was studied. The experiments were carried out using 500 kWth pilot scale BFB unit combusting lignite. In addition, an experiment was performed with the combustion of wooden pellets. With reagent injection, all experiments led to the reduction of nitrogen oxides and the highest NOX reduction of 58% was achieved

    Experimental verification of the impact of the air staging on the NOx production and on the temperature profile in a BFB

    Get PDF
    The results of an experimental research on air staging in a bubbling fluidized bed (BFB) combustor are presented within this paper. Air staging is known as an effective primary measure to reduce NOX formation. However, in the case of a number of industrial BFB units, it does not have to be sufficient to meet the emission standards. Then selective non-catalytic reduction (SNCR) can be a cost-effective option for further reduction of the already formed NOX. The required temperature range at the place of the reducing agent injection for an effective application of the SNCR without excessive ammonia slip is above the temperatures normally attained in BFBs. The aim of this paper is to evaluate the impact of staged air injection on the formation of NOX in BFB combustors and to examine the possibility of increasing the freeboard temperature. Several experiments with various secondary/primary air ratios were performed with a constant oxygen concentration in the flue gas. The experiments were carried out using wooden biomass and lignite as fuel in a 30 kWth laboratory scale BFB combustor. Furthermore, the results were verified using a 500 kWth pilot scale BFB unit. The results confirmed that the air staging can effectively move the dominant combustion zone from the dense bed to the freeboard section, and thus the temperatures for an effective application of the SNCR can be obtained

    Experimental verification of the efficiency of selective non-catalytic reduction in a bubbling fluidized bed combustor

    Get PDF
    Controlling nitrogen oxide (NOX) emissions is still a challenge as increasingly stringent emission limits are introduced. Strict regulations will lead to the need to introduce secondary measures even for boilers with bubbling fluidized bed (BFB), which are generally characterized by low NOX emissions. Selective non-catalytic reduction has lower investment costs compared to other secondary measures for NOX reduction, but the temperatures for its efficient utilization are difficult to achieve in BFBs. This paper studies the possibility of an effective application of selective non-catalytic reduction (SNCR) of nitrogen oxides in a pilot-scale facility with a bubbling fluidized bed. The effect of temperatures between 880 and 950 °C in the reagent injection zone on NOX reduction was investigated. For the selected temperature, the effect of the amount of injected reagent, urea solution with concentration 32.5%wt., was studied. The experiments were carried out using 500 kWth pilot scale BFB unit combusting lignite. In addition, an experiment was performed with the combustion of wooden pellets. With reagent injection, all experiments led to the reduction of nitrogen oxides and the highest NOX reduction of 58% was achieved

    Applicability of Secondary Denitrification Measures on a Fluidized Bed Boiler

    Get PDF
    This article compares performance of selective catalytic reduction (SCR) and selective non-catalytic reduction (SNCR) applied on the same pilot unit, a 500 kW fluidized bed boiler burning Czech lignite. Correlation of the denitrification efficiency on the normalized stoichiometric ratio (NSR) is investigated. The fundamental principle of the SCR and SNCR is similar with the same reaction scheme. The difference is in the use of the catalyst that lowers the activation energy of the key reaction. As a result, the reduction is performed in the SCR method at lower temperatures. During experiments, the NSR was up to 1.6 for the SCR method. For the SNCR method, which has a higher reducing agent consumption, maximum denitrification efficiency was reached for NSR about 2.5. The efficiency of both secondary methods was investigated. The denitrification efficiency during experiments exceeded 98 % for the SCR method, and the SNCR method, together with the primary measures, reached an efficiency of 58 %

    Sculptor Josef Dietrich from České Budějovice

    No full text
    The aim of this work is to discuss the life and selected works of somewhat neglected baroque sculptor Josef Dietrich from České Budějovice. Because of his work in the streets of České Budějovice occupies privileged position in number, he could be considered as the most important and most prolific artist who ever lived in this city and his contribution to the South Bohemian baroque art, in my opinion, has not been adequately appreciated. All aspects of artistic and personal life of Josef Dietrich could not be covered in this bachelor thesis, so the aim of this task is to analyze selected works of Dietrich and take them into his account patterns, to identify previously unknown circumstances of his creation, to highlight his importance to České Budějovice region and integrate the production of his workshop into the development of baroque sculpture in the country. The principal sources in the preparation of this work I have been using were archivals and literature about the history and development of České Budějovice city where Josef Dietrich lived most of his life

    Experimental verification of the impact of the air staging on the NOx production and on the temperature profile in a BFB

    Get PDF
    The results of an experimental research on air staging in a bubbling fluidized bed (BFB) combustor are presented within this paper. Air staging is known as an effective primary measure to reduce NOX formation. However, in the case of a number of industrial BFB units, it does not have to be sufficient to meet the emission standards. Then selective non-catalytic reduction (SNCR) can be a cost-effective option for further reduction of the already formed NOX. The required temperature range at the place of the reducing agent injection for an effective application of the SNCR without excessive ammonia slip is above the temperatures normally attained in BFBs. The aim of this paper is to evaluate the impact of staged air injection on the formation of NOX in BFB combustors and to examine the possibility of increasing the freeboard temperature. Several experiments with various secondary/primary air ratios were performed with a constant oxygen concentration in the flue gas. The experiments were carried out using wooden biomass and lignite as fuel in a 30 kWth laboratory scale BFB combustor. Furthermore, the results were verified using a 500 kWth pilot scale BFB unit. The results confirmed that the air staging can effectively move the dominant combustion zone from the dense bed to the freeboard section, and thus the temperatures for an effective application of the SNCR can be obtained

    Applicability of Secondary Denitrification Measures on a Fluidized Bed Boiler

    Get PDF
    This article compares performance of selective catalytic reduction (SCR) and selective non-catalytic reduction (SNCR) applied on the same pilot unit, a 500 kW fluidized bed boiler burning Czech lignite. Correlation of the denitrification efficiency on the normalized stoichiometric ratio (NSR) is investigated. The fundamental principle of the SCR and SNCR is similar with the same reaction scheme. The difference is in the use of the catalyst that lowers the activation energy of the key reaction. As a result, the reduction is performed in the SCR method at lower temperatures. During experiments, the NSR was up to 1.6 for the SCR method. For the SNCR method, which has a higher reducing agent consumption, maximum denitrification efficiency was reached for NSR about 2.5. The efficiency of both secondary methods was investigated. The denitrification efficiency during experiments exceeded 98 % for the SCR method, and the SNCR method, together with the primary measures, reached an efficiency of 58 %
    corecore