6 research outputs found

    Population Trends and Policies in the UNECE Region: Outcomes, Policies and Possibilities

    Get PDF
    With the 20-year anniversary of the landmark International Conference on Population and Development (ICPD) on the horizon, the UN General Assembly asked the UN Population Fund (UNFPA) to lead a global process aimed at taking stock of the progress that has been made in implementing the Programme of Action adopted by the ICPD in Cairo in 1994, and at identifying priorities for the future. In the region comprising Europe, Central Asia, North America and Israel, UNFPA, together with the UN Economic Commission for Europe (UNECE), initiated a comprehensive process of consultations with governments, civil society, academia, youth and parliamentarians to solicit their input and ideas for an updated population and development agenda for the 21st century

    BODIPY-based conjugated polymers for broadband light sensing and harvesting applications

    Get PDF
    The synthesis of novel low band-gap polymers has significantly improved light sensing and harvesting in polymer-fullerene devices. Here the synthesis of two low band-gap polymers based on the 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene core (BODIPY), and either bis(3,4-ethylenedioxythiophene) (bis-EDOT) or its all-sulfur analogue bis(3,4-ethylenedithiathiophene) (bis-EDTT) are described. The polymers demonstrate ambipolar charge transport and are shown to be suitable for broadband light sensing and solar energy harvesting in solution-processable polymer-fullerene devices

    Oscillations of bubbles attached to a capillary: case of pure liquid

    No full text
    An oscillating bubble attached to a tip of a capillary is used for probing interfacial properties of liquids containing surface-active agents. Nevertheless, available theories even for the case of pure liquid are not satisfactory. In this contribution, we therefore present results of a linear inviscid theory for shape oscillations of a spherical bubble, which is in contact with a solid support. The theory allows determining eigenmodes (i.e. eigenfrequencies, eigenmode shapes and damping of eigenmode oscillations), but also response of the bubble shape to a motion of its support or to volume variations. Present theory covers also the cases previously analyzed by Strani and Sabetta (J. Fluid Mech., 1984) and Bostwick and Steen (Phys. Fluids, 2009), and it can be applied to both bubbles and drops. The theory has been compared to experiments. Good agreement is found for the case of small bubbles, which have spherical static shape. Experimental results for larger bubbles and drops deviate from the theory, if a neck is formed. It is shown that this deviation correlates well with a ratio of bubble volume to the maximum volume, when a detachment occurs

    Microelectrode sensor utilising nitro-sensitive polymers for application in explosives detection

    No full text
    This Letter describes a fabrication of a microsensor incorporating a novel customised nitro-sensitive polymer derived from the propylenedioxythiophene family. Electrochemical polymerisation was used to selectively grow different types of localised polymer films on interdigitated electrode arrays, thereby fabricating miniature sensors that exhibited a highly selective and reversible response to chemical vapours containing 'nitro' (NO2) groups. Such nitro-bearing vapours are also present in trace quantities in the atmosphere in the presence of explosives. Vapours of nitropropane and nitrobenzene, serving as model analytes for explosives, were used for sensor testing. The sensors were demonstrated to have up to three orders of magnitude higher signal response to vapours from nitro compounds compared to other vapours commonly found in the atmosphere. The authors believe this is the highest selectivity to nitro compounds reported from a polymer-based chemicapacitor sensor

    Oscillations of bubbles attached to a capillary: case of pure liquid

    No full text
    An oscillating bubble attached to a tip of a capillary is used for probing interfacial properties of liquids containing surface-active agents. Nevertheless, available theories even for the case of pure liquid are not satisfactory. In this contribution, we therefore present results of a linear inviscid theory for shape oscillations of a spherical bubble, which is in contact with a solid support. The theory allows determining eigenmodes (i.e. eigenfrequencies, eigenmode shapes and damping of eigenmode oscillations), but also response of the bubble shape to a motion of its support or to volume variations. Present theory covers also the cases previously analyzed by Strani and Sabetta (J. Fluid Mech., 1984) and Bostwick and Steen (Phys. Fluids, 2009), and it can be applied to both bubbles and drops. The theory has been compared to experiments. Good agreement is found for the case of small bubbles, which have spherical static shape. Experimental results for larger bubbles and drops deviate from the theory, if a neck is formed. It is shown that this deviation correlates well with a ratio of bubble volume to the maximum volume, when a detachment occurs
    corecore