5 research outputs found
Skill improvement of dynamical seasonal Arctic sea ice forecasts
We explore the error and improve the skill of the outcome from dynamical seasonal Arctic sea ice reforecasts using different bias correction and ensemble calibration methods. These reforecasts consist of a five-member ensemble from 1979 to 2012 using the general circulation model EC-Earth. The raw model reforecasts show large biases in Arctic sea ice area, mainly due to a differently simulated seasonal cycle and long term trend compared to observations. This translates very quickly (1-3months) into large biases. We find that (heteroscedastic) extended logistic regressions are viable ensemble calibration methods, as the forecast skill is improved compared to standard bias correction methods. Analysis of regional skill of Arctic sea ice shows that the Northeast Passage and the Kara and Barents Sea are most predictable. These results show the importance of reducing model error and the potential for ensemble calibration in improving skill of seasonal forecasts of Arctic sea ice
Automated control for investigation of the insufflation-ventilation interaction in experimental laparoscopy.
In laparoscopic surgery the abdominal cavity is insufflated with pressurized carbon dioxide gas to create workspace. This pressure is exerted through the diaphragm onto the lungs, competing with ventilation and hampering it. In clinical practice the difficulty of optimizing this balance can lead to the application of harmfully high pressures. This study set out to create a research platform for the investigation of the complex interaction between insufflation and ventilation in an animal model. The research platform was constructed to incorporate insufflation, ventilation and relevant hemodynamic monitoring devices, controlling insufflation and ventilation from a central computer. The core of the applied methodology is the fixation of physiological parameters by applying closed-loop control of specific ventilation parameters. For accurate volumetric measurements the research platform can be used in a CT scanner. An algorithm was designed to keep blood carbon dioxide and oxygen values stable, minimizing the effect of fluctuations on vascular tone and hemodynamics. This design allowed stepwise adjustment of insufflation pressure to measure the effects on ventilation and circulation. A pilot experiment in a porcine model demonstrated adequate platform performance. The developed research platform and protocol automation have the potential to increase translatability and repeatability of animal experiments on the biomechanical interactions between insufflation and ventilation
A novel method for monitoring abdominal compliance to optimize insufflation pressure during laparoscopy
Background: Abdominal compliance describes the ease of expansion of the abdominal cavity. Several studies highlighted the importance of monitoring abdominal compliance (Cab) during the creation of laparoscopic workspace to individualize the insufflation pressure. The lack of validated clinical monitoring tools for abdominal compliance prevents accurate tailoring of insufflation pressure. Oscillometry, also known as the forced oscillation technique (FOT), is currently used to measure respiratory mechanics and has the potential to be adapted for monitoring abdominal compliance. This study aimed to define, develop and evaluate a novel approach which can monitor abdominal compliance during laparoscopy using endoscopic oscillometry. Materials and methods: Endoscopic oscillometry was evaluated in a porcine model for laparoscopy. A custom-built insufflator was developed for applying an oscillatory pressure signal superimposed onto a mean intra-abdominal pressure. This insufflator was used to measure the abdominal compliance at insufflation pressures ranging from 5 to 20 hPa (3.75 to 15 mmHg). The measurements were compared to the static abdominal compliance, which was measured simultaneously with computed tomography imaging. Results: Endoscopic oscillometry recordings and CT images were obtained in 10 subjects, resulting in 76 measurement pairs for analysis. The measured dynamic Cab ranged between 0.0216 and 0.261 L/hPa while the static Cab based on the CT imaging ranged between 0.0318 and 0.364 L/hPa. The correlation showed a polynomial relation and the adjusted R-squared was 97.1%. Conclusions: Endoscopic oscillometry can be used to monitor changes in abdominal compliance during laparoscopic surgery, which was demonstrated in this study with a comparison with CT imaging in a porcine laparoscopy model. Use of this technology to personalize the insufflation pressure could reduce the risk of applying excessive pressure and limit the drawbacks of insufflation.Medical Instruments & Bio-Inspired Technolog