2,570 research outputs found

    Overcoming steroid resistance in T cell acute lymphoblastic leukemia

    Get PDF
    In a Perspective, Pieter Van Vlierberghe and Steven Goossens discuss Meijerink and colleagues' findings on steroid resistance in pediatric T cell acute lymphoblastic leukemia

    Non-steady scaling model for the kinetics of the photo-induced free radical polymerization of crosslinking networks

    Get PDF
    Recently, a semi-empirical scaling model was introduced to account for the free-radical polymerization kinetics of acrylated urethane precursors in the solid-state. By describing the radical initiation process in more detail, the kinetic model is extended herein towards general free-radical crosslinking irrespective of the initial physical state of the multifunctional precursors. Effects referred to as radical trapping and caging in the literature are clearly specified and a closed-form expression with a limited number of adjustable parameters is obtained which can be compared to experimental kinetics. In particular, the relation between polymerization rate and functional conversion can be reduced to expressions with three and four parameters in the limits of "solid-state" and "steady-state" kinetics, respectively. In the case of photoinduced free-radical polymerization and within the slow decomposition regime of the initiator, the single parameter with an explicit dependence on the incident light intensity is predicted to behave proportionally. The model is validated by comparing the relevant expressions to original calorimetric data for the free-radical photopolymerization kinetics of different acrylate urethane precursors at two temperatures, providing illustrations for solid-to-solid and liquid-to-rubber transformations. Careful monitoring of the effect of light intensity corroborates the expected scaling and additionally offers reliable estimates for the kinetic coefficients of propagation and termination

    The potential of glycomics as prognostic biomarkers in liver disease and liver transplantation

    Get PDF
    The study of glycomics is a novel and fascinating approach for the development of biomarkers. It has become clear that in the field of liver disease specific glycomic patters are present in specific disease states, which has led to the development of diagnostic biomarkers. In this manuscript, we will describe two new applications of this technology for the development of prognostic biomarkers. The first biomarker is associated with the risk of hepatocellular carcinoma development in patients with compensated cirrhosis. The second biomarker is present in perfusate and is related to the risk of primary non function occurrence after liver transplantation. The technology used for these biomarkers could easily be implemented on routine capillary electrophoresis equipment

    Molecular-genetic insights in pediatric T-cell acute lymphoblastic leukemia

    Get PDF

    Molecular-genetic insights in pediatric T-cell acute lymphoblastic leukemia

    Get PDF

    T-ALL and thymocytes : a message of noncoding RNAs

    Get PDF
    In the last decade, the role for noncoding RNAs in disease was clearly established, starting with microRNAs and later expanded towards long noncoding RNAs. This was also the case for T cell acute lymphoblastic leukemia, which is a malignant blood disorder arising from oncogenic events during normal T cell development in the thymus. By studying the transcriptomic profile of protein-coding genes, several oncogenic events leading to T cell acute lymphoblastic leukemia (T-ALL) could be identified. In recent years, it became apparent that several of these oncogenes function via microRNAs and long noncoding RNAs. In this review, we give a detailed overview of the studies that describe the noncoding RNAome in T-ALL oncogenesis and normal T cell development
    corecore