383 research outputs found

    Influenza season influence on outcome of new nodules in the NELSON study

    Get PDF
    We evaluated the impact of the influenza season on outcome of new lung nodules in a LDCT lung cancer screening trial population. NELSON-trial participants with ≄ 1 new nodule detected in screening rounds two and three were included. Outcome (resolution or persistence) of new nodules detected per season was calculated and compared. Winter (influenza season) was defined as 1st October to 31st March, and compared to the summer (hay-fever season), 1st April to 30th September. Overall, 820 new nodules were reported in 529 participants. Of the total new nodules, 482 (59%) were reported during winter. When considering the outcome of all new nodules, there was no statistically significant association between summer and resolving nodules (OR 1.07 [CI 1.00-1.15], p = 0.066), also when looking at the largest nodule per participant (OR 1.37 [CI 0.95-1.98], p = 0.094). Similarly, there was no statistically significant association between season and screen detected cancers (OR 0.47 [CI 0.18-1.23], p = 0.123). To conclude, in this lung cancer screening population, there was no statistically significant association between influenza season and outcome of new lung nodules. Hence, we recommend new nodule management strategy is not influenced by the season in which the nodule is detected.</p

    Calcium scoring using 64-slice MDCT, dual source CT and EBT: a comparative phantom study

    Get PDF
    Purpose Assessment of calcium scoring (Ca-scoring) on a 64-slice multi-detector computed tomography (MDCT) scanner, a dual-source computed tomography (DSCT) scanner and an electron beam tomography (EBT) scanner with a moving cardiac phantom as a function of heart rate, slice thickness and calcium density. Methods and materials Three artificial arteries with inserted calcifications of different sizes and densities were scanned at rest (0 beats per minute) and at 50–110 beats per minute (bpm) with an interval of 10 bpm using 64-slice MDCT, DSCT and EBT. Images were reconstructed with a slice thickness of 0.6 and 3.0 mm. Agatston score, volume score and equivalent mass score were determined for each artery. A cardiac motion susceptibility (CMS) index was introduced to assess the susceptibility of Ca-scoring to heart rate. In addition, a difference (Δ) index was introduced to assess the difference of absolute Ca-scoring on MDCT and DSCT with EBT. Results Ca-score is relatively constant up to 60 bpm and starts to decrease or increase above 70 bpm, depending on scoring method, calcification density and slice thickness. EBT showed the least susceptibility to cardiac motion with the smallest average CMS-index (2.5). The average CMS-index of 64-slice MDCT (9.0) is approximately 2.5 times the average CMS-index of DSCT (3.6). The use of a smaller slice thickness decreases the CMS-index for both CT-modalities. The Δ-index for DSCT at 0.6 mm (53.2) is approximately 30% lower than the Δ-index for 64-slice MDCT at 0.6 mm (72.0). The Δ-indexes at 3.0 mm are approximately equal for both modalities (96.9 and 102.0 for 64-slice MDCT and DSCT respectively). Conclusion Ca-scoring is influenced by heart rate, slice thickness and modality used. Ca-scoring on DSCT is approximately 50% less susceptible to cardiac motion as 64-slice MDCT. DSCT offers a better approximation of absolute calcium score on EBT than 64-slice MDCT when using a smaller slice thickness. A smaller slice thickness reduces the susceptibility to cardiac motion and reduces the difference between CT-data and EBT-data. The best approximation of EBT on CT is found for DSCT with a slice thickness of 0.6 mm

    Reduced Lung-Cancer Mortality with Volume CT Screening in a Randomized Trial

    Get PDF
    BACKGROUND There are limited data from randomized trials regarding whether volume-based, low-dose computed tomographic (CT) screening can reduce lung-cancer mortality among male former and current smokers. METHODS A total of 13,195 men (primary analysis) and 2594 women (subgroup analyses) between the ages of 50 and 74 were randomly assigned to undergo CT screening at T0 (baseline), year 1, year 3, and year 5.5 or no screening. We obtained data on cancer diagnosis and the date and cause of death through linkages with national registries in the Netherlands and Belgium, and a review committee confirmed lung cancer as the cause of death when possible. A minimum follow-up of 10 years until December 31, 2015, was completed for all participants. RESULTS Among men, the average adherence to CT screening was 90.0%. On average, 9.2% of the screened participants underwent at least one additional CT scan (initially indeterminate). The overall referral rate for suspicious nodules was 2.1%. At 10 years of follow-up, the incidence of lung cancer was 5.58 cases per 1000 personyears in the screening group and 4.91 cases per 1000 person-years in the control group; lung-cancer mortality was 2.50 deaths per 1000 person-years and 3.30 deaths per 1000 person-years, respectively. The cumulative rate ratio for death from lung cancer at 10 years was 0.76 (95% confidence interval [CI], 0.61 to 0.94; P = 0.01) in the screening group as compared with the control group, similar to the values at years 8 and 9. Among women, the rate ratio was 0.67 (95% CI, 0.38 to 1.14) at 10 years of follow-up, with values of 0.41 to 0.52 in years 7 through 9. CONCLUSIONS In this trial involving high-risk persons, lung-cancer mortality was significantly lower among those who underwent volume CT screening than among those who underwent no screening. There were low rates of follow-up procedures for results suggestive of lung cancer. (Funded by the Netherlands Organization of Health Research and Development and others; NELSON Netherlands Trial Register number, NL580.)

    CT and MR imaging prior to transcatheter aortic valve implantation: standardisation of scanning protocols, measurements and reporting—a consensus document by the European Society of Cardiovascular Radiology (ESCR)

    Get PDF
    Abstract: Transcatheter aortic valve replacement (TAVR) is a minimally invasive alternative to conventional aortic valve replacement in symptomatic patients with severe aortic stenosis and contraindications to surgery. The procedure has shown to improve patient’s quality of life and prolong short- and mid-term survival in high-risk individuals, becoming a widely accepted therapeutic option which has been integrated into current clinical guidelines for the management of valvular heart disease. Nevertheless, not every patient at high-risk for surgery is a good candidate for TAVR. Besides clinical selection, which is usually established by the Heart Team, certain technical and anatomic criteria must be met as, unlike in surgical valve replacement, annular sizing is not performed under direct surgical evaluation but on the basis of non-invasive imaging findings. Present consensus document was outlined by a working group of researchers from the European Society of Cardiovascular Radiology (ESCR) and aims to provide guidance on the utilisation of CT and MR imaging prior to TAVR. Particular relevance is given to the technical requirements and standardisation of the scanning protocols which have to be tailored to the remarkable variability of the scanners currently utilised in clinical practice; recommendations regarding all required pre-procedural measurements and medical reporting standardisation have been also outlined, in order to ensure quality and consistency of reported data and terminology. Key Points ‱ To provide a reference document for CT and MR acquisition techniques, taking into account the significant technological variation of available scanners. ‱ To review all relevant measurements that are required and define a step-by-step guided approach for the measurements of different structures implicated in the procedure. ‱ To propose a CT/MR reporting template to assist in consistent communication between various sites and specialists involved in the procedural planning

    Measurement of coronary calcium scores by electron beam computed tomography or exercise testing as initial diagnostic tool in low-risk patients with suspected coronary artery disease

    Get PDF
    We determined the efficiency of a screening protocol based on coronary calcium scores (CCS) compared with exercise testing in patients with suspected coronary artery disease (CAD), a normal ECG and troponin levels. Three-hundred-and-four patients were enrolled in a screening protocol including CCS by electron beam computed tomography (Agatston score), and exercise testing. Decision-making was based on CCS. When CCS≄400, coronary angiography (CAG) was recommended. When CCS<10, patients were discharged. Exercise tests were graded as positive, negative or nondiagnostic. The combined endpoint was defined as coronary event or obstructive CAD at CAG. During 12±4 months, CCS≄400, 10–399 and <10 were found in 42, 103 and 159 patients and the combined endpoint occurred in 24 (57%), 14 (14%) and 0 patients (0%), respectively. In 22 patients (7%), myocardial perfusion scintigraphy was performed instead of exercise testing due to the inability to perform an exercise test. A positive, nondiagnostic and negative exercise test result was found in 37, 76 and 191 patients, and the combined endpoint occurred in 11 (30%), 15 (20%) and 12 patients (6%), respectively. Receiver-operator characteristics analysis showed that the area under the curve of 0.89 (95% CI: 0.85–0.93) for CCS was superior to 0.69 (95% CI: 0.61–0.78) for exercise testing (P<0.0001). In conclusion, measurement of CCS is an appropriate initial screening test in a well-defined low-risk population with suspected CAD
    • 

    corecore