426 research outputs found

    Yet another surprise in the problem of classical diamagnetism

    Get PDF
    The well known Bohr-van Leeuwen Theorem states that the orbital diamagnetism of classical charged particles is identically zero in equilibrium. However, results based on real space-time approach using the classical Langevin equation predicts non-zero diamagnetism for classical unbounded (finite or infinite) systems. Here we show that the recently discovered Fluctuation Theorems, namely, the Jarzynski Equality or the Crooks Fluctuation Theorem surprisingly predict a free energy that depends on magnetic field as well as on the friction coefficient, in outright contradiction to the canonical equilibrium results. However, in the cases where the Langevin approach is consistent with the equilibrium results, the Fluctuation Theorems lead to results in conformity with equilibrium statistical mechanics. The latter is demonstrated analytically through a simple example that has been discussed recently.Comment: 6 pages, 6 figure

    Bohr-van Leeuwen theorem and the thermal Casimir effect for conductors

    Full text link
    The problem of estimating the thermal corrections to Casimir and Casimir-Polder interactions in systems involving conducting plates has attracted considerable attention in the recent literature on dispersion forces. Alternative theoretical models, based on distinct low-frequency extrapolations of the plates reflection coefficient for transverse electric (TE) modes, provide widely different predictions for the magnitude of this correction. In this paper we examine the most widely used prescriptions for this reflection coefficient from the point of view of their consistency with the Bohr-van Leeuwen theorem of classical statistical physics, stating that at thermal equilibrium transverse electromagnetic fields decouple from matter in the classical limit. We find that the theorem is satisfied if and only if the TE reflection coefficient vanishes at zero frequency in the classical limit. This criterion appears to rule out some of the models that have been considered recently for describing the thermal correction to the Casimir pressure with non-magnetic metallic plates.Comment: 12 pages, no figures. Presentation has been significantly improved, more references included. The new version matches the one accepted for publication in Phys. Rev.

    Impurity relaxation mechanism for dynamic magnetization reversal in a single domain grain

    Full text link
    The interaction of coherent magnetization rotation with a system of two-level impurities is studied. Two different, but not contradictory mechanisms, the `slow-relaxing ion' and the `fast-relaxing ion' are utilized to derive a system of integro-differential equations for the magnetization. In the case that the impurity relaxation rate is much greater than the magnetization precession frequency, these equations can be written in the form of the Landau-Lifshitz equation with damping. Thus the damping parameter can be directly calculated from these microscopic impurity relaxation processes

    Adiabatic orientation of rotating dipole molecules in an external field

    Get PDF
    The induced polarization of a beam of polar clusters or molecules passing through an electric or magnetic field region differs from the textbook Langevin-Debye susceptibility. This distinction, which is important for the interpretation of deflection and focusing experiments, arises because instead of acquiring thermal equilibrium in the field region, the beam ensemble typically enters the field adiabatically, i.e., with a previously fixed distribution of rotational states. We discuss the orientation of rigid symmetric-top systems with a body-fixed electric or magnetic dipole moment. The analytical expression for their "adiabatic-entry" orientation is elucidated and compared with exact numerical results for a range of parameters. The differences between the polarization of thermodynamic and "adiabatic-entry" ensembles, of prolate and oblate tops, and of symmetric-top and linear rotators are illustrated and identified.Comment: 18 pages, 4 figure

    Slow spin relaxation in a highly polarized cooperative paramagnet

    Full text link
    We report measurements of the ac susceptibility of the cooperative paramagnet Tb2Ti2O7 in a strong magnetic field. Our data show the expected saturation maximum in chi(T) and also an unexpected low frequency dependence (< 1 Hz) of this peak, suggesting very slow spin relaxations are occurring. Measurements on samples diluted with nonmagnetic Y3+ or Lu3+ and complementary measurements on pure and diluted Dy2Ti2O7 strongly suggest that the relaxation is associated with dipolar spin correlations, representing unusual cooperative behavior in a paramagnetic system.Comment: Accepted for publication in Physical Review Letter

    Dzyaloshinsky-Moriya Spin Canting in the LTT Phase of La2-x-yEuySrxCuO4

    Full text link
    The Cu spin magnetism in La2-x-yEuySrxCuO4 (x<=0.17; y<=0.2) has been studied by means of magnetization measurements up to 14 T. Our results clearly show that in the antiferromagnetic phase Dzyaloshinsky-Moriya (DM)superexchange causes Cu spin canting not only in the LTO phase but also in the LTLO and LTT phases. In La1.8Eu0.2CuO4 the canted DM-moment is about 50% larger than in pure La2CuO4 which we attribute to the larger octahedral tilt angle. We also find clear evidence that the size of the DM-moment does not change significantly at the structural transition at T_LT from LTO to LTLO and LTT. The most important change induced by the transition is a significant reduction of the magnetic coupling between the CuO2 planes. As a consequence, the spin-flip transition of the canted Cu spins which is observed in the LTO phase for magnetic field perpendicular to the CuO2 planes disappears in the LTT phase. The shape of the magnetization curves changes from the well known spin-flip type to a weak-ferromagnet type. However, no spontaneous weak ferromagnetism is observed even at very low temperatures, which seems to indicate that the interlayer decoupling in our samples is not perfect. Nonetheless, a small fraction (<15%) of the DM-moments can be remanently magnetized throughout the entire antiferromagnetically ordered LTT/LTLO phase, i.e. for T<T_LT and x<0.02. It appears that the remanent DM-moment is perpendicular to the CuO2 planes. For magnetic field parallel to the CuO2 planes we find that the critical field of the spin-flop transition decreases in the LTLO phase, which might indicate a competition between different in-plane anisotropies. To study the Cu spin magnetism in La2-x-yEuySrxCuO4, a careful analysis of the Van Vleck paramagnetism of the Eu3+ ions was performed.Comment: 22 pages, 27 figure

    One-Loop Corrections to Bubble Nucleation Rate at Finite Temperature

    Full text link
    We present an evaluation of the 1-loop prefactor in the lifetime of a metastable state which decays at finite temperature by bubble nucleation. Such a state is considered in one-component phi^4 model in three space dimensions. The calculation serves as a prototype application of a fast numerical method for evaluating the functional determinants that appear in semiclassical approximations.Comment: DO-TH-93/18, 15 pages, 11 Figures available on request, LaTeX, no macros neede

    Classical Langevin dynamics of a charged particle moving on a sphere and diamagnetism: A surprise

    Get PDF
    It is generally known that the orbital diamagnetism of a classical system of charged particles in thermal equilibrium is identically zero -- the Bohr-van Leeuwen theorem. Physically, this null result derives from the exact cancellation of the orbital diamagnetic moment associated with the complete cyclotron orbits of the charged particles by the paramagnetic moment subtended by the incomplete orbits skipping the boundary in the opposite sense. Motivated by this crucial, but subtle role of the boundary, we have simulated here the case of a finite but \emph{unbounded} system, namely that of a charged particle moving on the surface of a sphere in the presence of an externally applied uniform magnetic field. Following a real space-time approach based on the classical Langevin equation, we have computed the orbital magnetic moment which now indeed turns out to be non-zero, and has the diamagnetic sign. To the best of our knowledge, this is the first report of the possibility of finite classical diamagnetism in principle, and it is due to the avoided cancellation.Comment: Accepted for publication in EP

    Chaos and Semiclassical Limit in Quantum Cosmology

    Full text link
    In this paper we present a Friedmann-Robertson-Walker cosmological model conformally coupled to a massive scalar field where the WKB approximation fails to reproduce the exact solution to the Wheeler-DeWitt equation for large Universes. The breakdown of the WKB approximation follows the same pattern than in semiclassical physics of chaotic systems, and it is associated to the development of small scale structure in the wave function. This result puts in doubt the ``WKB interpretation'' of Quantum Cosmology.Comment: 14 pages in LaTex (RevTex), 6 figure

    Thermal Casimir Force between Magnetic Materials

    Full text link
    We investigate the Casimir pressure between two parallel plates made of magnetic materials at nonzero temperature. It is shown that for real magnetodielectric materials only the magnetic properties of ferromagnets can influence the Casimir pressure. This influence is accomplished through the contribution of the zero-frequency term of the Lifshitz formula. The possibility of the Casimir repulsion through the vacuum gap is analyzed depending on the model used for the description of the dielectric properties of the metal plates.Comment: 9 pages, 3 figures. Contribution to the Proceedings of QFEXT09, Norman, OK, September 21-25, 200
    corecore