6 research outputs found

    Grading-system-dependent volume effects for late radiation-induced rectal toxicity after curative radiotherapy for prostate cancer

    No full text
    PURPOSE: To assess the association between the dose distributions in the rectum and late Radiation Therapy Oncology Group and the European Organisation for Research and Treatment of Cancer (RTOG/EORTC), Late Effects of Normal Tissue SOMA, and Common Terminology Criteria for Adverse Events (CTCAE) version 3.0 graded rectal toxicity among patients with prostate cancer treated with RT. METHODS AND MATERIALS: Included in the study were 124 patients who received three-dimensional conformal RT for prostate cancer to a total dose of 70 Gy in 2-Gy fractions. All patients completed questionnaires regarding rectum complaints before RT and during long-term follow-up. Late rectum Grade 2 or worse toxicity, according to RTOG/EORTC, LENT SOMA, and CTCAE v3.0 criteria, was analyzed in relation to rectal dose and volume parameters. RESULTS: Dose-volume thresholds (V40>or=65%, V50>or=55%, V65>or=45%, V70>or=20%, and a rectum volumeor=70 Gy (V70) was most predictive for late Grade 2 or worse rectal toxicity with each of the grading systems. The associations were strongest, however, with use of the LENT SOMA system. CONCLUSIONS: Volume effects for late radiation-induced rectal toxicity are present, but their clinical significance depends on the grading system used. This should be taken into account in the interpretation of studies reporting on radiation-induced rectal toxicity

    Dynamics of tumor hypoxia assessed by 18F-FAZA PET/CT in head and neck and lung cancer patients during chemoradiation: possible implications for radiotherapy treatment planning strategies

    No full text
    To define the optimal time point for the integration of hypoxia (18)F-FAZA-PET/CT information into radiotherapy treatment planning to benefit from hypoxia modification or dose escalation treatment. Therefore, we performed a prospective cohort study, using serial hypoxic imaging ((18)F-FAZA-PET/CT) prior to and at several time-points during (chemo)radiotherapy (CHRT) in six head and neck squamous cell (HNSCC) and six non-small cell lung cancer (NSCLC) patients.status: publishe

    Dynamics of tumor hypoxia assessed by F-18-FAZA PET/CT in head and neck and lung cancer patients during chemoradiation: Possible implications for radiotherapy treatment planning strategies

    No full text
    INTRODUCTION: To define the optimal time point for the integration of hypoxia (18)F-FAZA-PET/CT information into radiotherapy treatment planning to benefit from hypoxia modification or dose escalation treatment. Therefore, we performed a prospective cohort study, using serial hypoxic imaging ((18)F-FAZA-PET/CT) prior to and at several time-points during (chemo)radiotherapy (CHRT) in six head and neck squamous cell (HNSCC) and six non-small cell lung cancer (NSCLC) patients. METHODS: The spatio-temporal dynamics of tumor hypoxia and fractional hypoxic volumes (FHV) were evaluated using a voxel-by-voxel analysis based on a (18)F-FAZA-T/B ratio of 1.4 at four time points in HNSCC patients, at baseline (FAZA-BL), at week one (FAZA-W1), two (FAZA-W2), and four (FAZA-W4) during CHRT and at three time points in NSCLC patients (baseline; W2, W4). RESULTS: Ten out of twelve patients showed a substantial pre-treatment tumor hypoxia representing a FHV⩾1.4 assessed by (18)F-FAZA-PET/CT. The median FHV was 38% (FAZA-BL), 15% (FAZA-W1), 17% (FAZA-W2) and 1.5% (FAZA-W4) in HNSCC patients, and 34% (FAZA-BL), 26% (FAZA-W2) and 26% (FAZA-W4) in NSCLC patients, respectively. Stable tumor hypoxia was observed in three HNSCC patients and two NSCLC patients at FAZA-W2. In three HNSCC patients and two NSCLC patients FHVs declined to non-detectable hypoxia levels at FAZA-W4 during CHRT, while two NSCLC patients, showed increasing FHVs. CONCLUSION: Our results indicate that, instead of using the FAZA-BL scan as the basis for the dose escalation, FAZA-W2 of CHRT is most suitable and might provide a more reliable basis for the integration of (18)F-FAZA-PET/CT information into radiotherapy treatment planning for hypoxia-directed dose escalation strategies
    corecore