17 research outputs found

    Kinetic study of carbon dioxide catalytic methanation over cobalt–nickel catalysts

    Get PDF
    Based on the data of the thermoprogrammed desorption and using mass-spectroscopic analysis of desorbed products and on the kinetic patterns of the methanation process for cobalt–nickel catalysts, we suggested a mechanism for the reaction which passes through forming intermediate formyl compounds: CHO*, HCOH*, and HCOOH*. Because of the high stability of the carbon dioxide molecule, the step of adding the first hydrogen atom is the limiting step. Such a mechanism is in good agreement with the proposed kinetic equations

    High-temperature Calorimetry of Liquid Gd-Si and Y-Si Alloys

    No full text
    Molten Gd-Si and Y-Si alloys were examined calorimetrically at 1760 and 1770 K, respectively. The partial enthalpies of mixing of gadolinium (∆ mixHGd ), yttrium (∆ mixHY ) and silicon (∆ mixHSi ) were measured. The integral enthalpy of mixing (∆ mix H) was calculated by Darken's method. The available thermodynamic data of liquid (Gd,Y)-Si alloys were compared. The partial enthalpies of mixing of Gd and Y, and appropriate integral enthalpies of mixing, were described by polynomial dependencies versus mole fraction of Gd or Y

    Platinum surface complexes as precursors for H–O recombination catalysts

    No full text
    In this work, the adsorption of platinum (II, IV) chloride complexes from acidic solutions on silica gel modified with quaternary ammonium salts (QAS) was studied. The uptake of the platinum chloride complexes is caused by the formation of ionic (QAS + ) 2 [PtCl x ] 2− ( x  = 4, 6) associates on the surface of silica gel. The isotherms of adsorption are fitted by the Langmuir model. The maximum capacity for [PtCl 4 ] 2− and [PtCl 6 ] 2− is 0.99 and 1.13 mmol/g, correspondingly. The respective adsorption constants K L  = 6.8 and 10 × 10 5  l/mol prove the high affinity of the adsorbates to the QAS-modified surface. Platinum metal nanoparticles supported on the surface of the silica gel were prepared by reducing the adsorbed platinum (II, IV) complexes. Such nanoparticles functioning at the moderate temperature regime have demonstrated a reasonable catalytic activity for the hydrogen and oxygen recombination, and an excellent stability over 35 cycles of the reaction

    Thermo-Exfoliated Graphite Containing CuO/Cu2(OH)3NO3:(Co2+/Fe3+) Composites: Preparation, Characterization and Catalytic Performance in CO Conversion

    No full text
    Thermo-exfoliated graphite (TEG)/CuO/Cu2(OH)3NO3:(Co2+/Fe3+) composites were prepared using a wet impregnation method and subsequent thermal treatment. The physicochemical characterization of the composites was carried out by powder X-ray diffraction (PXRD), scanning electron microscopy (SEM) and Ar temperature-desorption techniques. The catalytic efficiency toward CO conversion to CO2 was examined under atmospheric pressure. Characterization of species adsorbed over the composites taken after the activity tests were performed by means of temperature programmed desorption massspectrometry (TPD MS). (TEG)/CuO/Cu2(OH)3NO3:(Co2+/Fe3+) composites show superior performance results if lower temperatures and extra treatment with H2SO4 or HNO3 are used at the preparation stages. The catalytic properties enhancements can be related to the Cu2(OH)3NO3 phase providing reaction centers for the CO conversion. It has been found that prevalence of low-temperature states of desorbed CO2 over high-temperature ones in the TPD MS spectra is characteristic of the most active composite catalysts

    CO

    No full text
    One of the major goals when creating new energy systems is to provide clean and affordable energy. Currently, there is an excessive increase in the cost of fossil fuels and natural gas because of increased energy consumption and the inability to meet demand. That is why it is necessary to find reliable renewable energy sources and processes that will produce energy materials without toxic by-products in order to preserve the environment and to ensuring sustainable development and a strong economy. From environmental safety reasons, this need has led to the development of the catalytic synthesis of energetic materials from greenhouse gases; in particular, this paper proposes an efficient approach to producing methane by hydrogenation of carbon dioxide over Co–Ni catalysts

    CO

    No full text
    Adsorption is currently the most promising capture technology to shorten atmospheric emissions of carbon dioxide (CO2). In this article, we report on the adsorption of CO2 onto pristine, oxidized, and aminated activated carbon (AC) sorbents. From our findings, some functionalized AC sorbents have shown very promising results in the CO2 capture process. Their maximum adsorption capacity measured by the thermogravimetric method at 20 °C varies between 2.2 and 3.9 mmol CO2/g depending on the content of diethylamino and oxygen-containing groups. The functionalization of the carbon surface with diethylamino groups improves the adsorption capacity by 30–40%. The CO2 adsorption little depends on the texture parameters of the pristine AC sorbents. In the range from 20 to 100 °C, the CO2 thermodesorption showed the effective regeneration of the sorbents. The aminated carbon surface demonstrates the best CO2 adsorption but binds the adsorbed molecules stronger than the oxidized surface, which limits the sorbent regeneration
    corecore