30 research outputs found

    Cellular Mechanism Underlying Hypothermia-Induced VT/VF in the Setting of Early Repolarization and the Protective Effect of Quinidine, Cilostazol and Milrinone

    No full text
    BACKGROUND: Hypothermia has been reported to induce ventricular tachycardia and fibrillation (VT/VF) in patients with early repolarization (ER) pattern. This study examines the cellular mechanisms underlying VT/VF associated with hypothermia in an experimental model of ER syndrome (ERS) and examines the effectiveness of quinidine, cilostazol and milrinone to prevent hypothermia-induced arrhythmias. METHOD AND RESULTS: Transmembrane action potentials (AP) were simultaneously recorded from 2 epicardial and 1 endocardial site of coronary-perfused canine left-ventricular wedge preparations, together with a pseudo-ECG. A combination of NS5806 (3–10 µM) and verapamil (1µM) was used to pharmacologically model the genetic mutations responsible for ERS. Acetylcholine (3µM) was used to simulate increased parasympathetic tone, which is known to promote ER. In control, lowering the temperature of the coronary perfusate to induce mild hypothermia (32°C-34°C) resulted in increased J wave area on the ECG and accentuated epicardial AP notch but no arrhythmic activity. In the setting of ER, hypothermia caused further accentuation of the epicardial AP notch, leading to loss of the AP dome at some sites but not others, thus creating the substrate for development of phase-2-reentry and VT/VF. Addition of the I(to) antagonist quinidine (5 µM) or the phosphodiesterase III inhibitors cilostazol (10 µM) or milrinone (5 µM), diminished the ER manifestations and prevented the hypothermia-induced phase 2 reentry and VT/VF. CONCLUSIONS: Hypothermia leads to VT/VF in the setting of ER by exaggerating repolarization abnormalities, leading to development of phase-2-reentry. Quinidine, cilostazol and milrinone suppress the hypothermia-induced VT/VF by reversing the repolarization abnormalities

    Overlapping LQT1 and LQT2 phenotype in a patient with long QT syndrome associated with loss-of-function variations in KCNQ1 and KCNH2

    No full text
    Long QT syndrome (LQTS) is an inherited disorder characterized by prolonged QT intervals and potentially life-threatening arrhythmias. Mutations in 12 different genes have been associated with LQTS. Here we describe a patient with LQTS who has a mutation in KCNQ1 as well as a polymorphism in KCNH2. The proband (MMRL0362), a 32-year-old female, exhibited multiple ventricular extrasystoles and one syncope. Her ECG (QT interval corrected for heart rate (QTc) = 518ms) showed an LQT2 morphology in leads V(4)–V(6) and LQT1 morphology in leads V(1)–V(2). Genomic DNA was isolated from lymphocytes. All exons and intron borders of 7 LQTS susceptibility genes were amplified and sequenced. Variations were detected predicting a novel missense mutation (V110I) in KCNQ1, as well as a common polymorphism in KCNH2 (K897T). We expressed wild-type (WT) or V110I K(v)7.1 channels in CHO-K1 cells cotransfected with KCNE1 and performed patch-clamp analysis. In addition, WT or K897T K(v)11.1 were also studied by patch clamp. Current–voltage (I-V) relations for V110I showed a significant reduction in both developing and tail current densities compared to WT at potentials >+20 mV (p < 0.05; n = 8 cells, each group), suggesting a reduction in I(Ks) currents. K897T- K(v)11.1 channels displayed a significantly reduced tail current density compared with WT-K(v)11.1 at potentials >+10 mV. Interestingly, channel availability assessed using a triple-pulse protocol was slightly greater for K897T compared with WT (V(0.5) = −53.1 ± 1.13 mV and −60.7 ± 1.15 mV for K897T and WT, respectively; p < 0.05). Comparison of the fully activated I-V revealed no difference in the rectification properties between WT and K897T channels. We report a patient with a loss-of-function mutation in KCNQ1 and a loss-of-function polymorphism in KCNH2. Our results suggest that a reduction of both I(Kr) and I(Ks) underlies the combined LQT1 and LQT2 phenotype observed in this patient

    Maximum diastolic potential of human induced pluripotent stem cell-derived cardiomyocytes depends critically on I(Kr).

    Get PDF
    Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM) hold promise for therapeutic applications. To serve these functions, the hiPSC-CM must recapitulate the electrophysiologic properties of native adult cardiomyocytes. This study examines the electrophysiologic characteristics of hiPSC-CM between 11 and 121 days of maturity. Embryoid bodies (EBs) were generated from hiPS cell line reprogrammed with Oct4, Nanog, Lin28 and Sox2. Sharp microelectrodes were used to record action potentials (AP) from spontaneously beating clusters (BC) micro-dissected from the EBs (n = 103; 37°C) and to examine the response to 5 µM E-4031 (n = 21) or BaCl(2) (n = 22). Patch-clamp techniques were used to record I(Kr) and I(K1) from cells enzymatically dissociated from BC (n = 49; 36°C). Spontaneous cycle length (CL) and AP characteristics varied widely among the 103 preparations. E-4031 (5 µM; n = 21) increased Bazett-corrected AP duration from 291.8±81.2 to 426.4±120.2 msec (p<0.001) and generated early afterdepolarizations in 8/21 preparations. In 13/21 BC, E-4031 rapidly depolarized the clusters leading to inexcitability. BaCl(2), at concentrations that selectively block I(K1) (50-100 µM), failed to depolarize the majority of clusters (13/22). Patch-clamp experiments revealed very low or negligible I(K1) in 53% (20/38) of the cells studied, but presence of I(Kr) in all (11/11). Consistent with the electrophysiological data, RT-PCR and immunohistochemistry studies showed relatively poor mRNA and protein expression of I(K1) in the majority of cells, but robust expression of I(Kr.) In contrast to recently reported studies, our data point to major deficiencies of hiPSC-CM, with remarkable diversity of electrophysiologic phenotypes as well as pharmacologic responsiveness among beating clusters and cells up to 121 days post-differentiation (dpd). The vast majority have a maximum diastolic potential that depends critically on I(Kr) due to the absence of I(K1). Thus, efforts should be directed at producing more specialized and mature hiPSC-CM for future therapeutic applications
    corecore