12 research outputs found

    Label-free macroscopic fluorescence lifetime imaging of brain tumors

    Get PDF
    Advanced stage glioma is the most aggressive form of malignant brain tumors with a short survival time. Real-time pathology assisted, or image guided surgical procedures that eliminate tumors promise to improve the clinical outcome and prolong the lives of patients. Our work is focused on the development of a rapid and sensitive assay for intraoperative diagnostics of glioma and identification of optical markers essential for differentiation between tumors and healthy brain tissues. We utilized fluorescence lifetime imaging (FLIM) of endogenous fluorophores related to metabolism of the glioma from freshly excised brains tissues. Macroscopic time-resolved fluorescence images of three intracranial animal glioma models and surgical samples of patients\u27 glioblastoma together with the white matter have been collected. Several established and new algorithms were applied to identify the imaging markers of the tumors. We found that fluorescence lifetime parameters characteristic of the glioma provided background for differentiation between the tumors and intact brain tissues. All three rat tumor models demonstrated substantial differences between the malignant and normal tissue. Similarly, tumors from patients demonstrated statistically significant differences from the peritumoral white matter without infiltration. While the data and the analysis presented in this paper are preliminary and further investigation with a larger number of samples is required, the proposed approach based on the macroscopic FLIM has a high potential for diagnostics of glioma and evaluation of the surgical margins of gliomas

    Nonlinear optical properties of collagen in solution

    No full text
    Hyper-Rayleigh scattering is used to measure the nonlinear optical properties of collagen in acetic acid solution. We find that the first hyperpolarizability unexpectedly drops with the increase of the concentration of collagen in solution. Circular dichroism absorption measurements indicate that the helical conformation remains stable, and the changes of nonlinear optical properties of collagen molecules are, most probably, due to the formation of some supramolecular structures of collagen in solution

    Third-harmonic Rayleigh scattering: theory and experiment

    No full text
    We present an analytical model for describing optical third-harmonic generation from a sphere that is small compared with the wavelength of light. Analysis of the problem shows that the power of the third harmonic from a sphere that is small compared with the waist size and the confocal parameter of the beam is proportional to the fourth power of a sphere's size. Experiments with different spheres both in index-matching and non-index-matching liquids are performed and confirm theoretical predictions

    How to measure χ(3) of a nanoparticle

    No full text
    Most of the known methods to measure the nonlinear optical properties of materials deal with the bulk properties, but there are many demanding applications that require those measurements to be done on a single particle or a single molecule. We report a novel application of nonlinear optics to measure the third-order nonlinear optical susceptibility of nanoparticles in solutions. By measuring the power of the third harmonic generated in a diluted solution of nanoparticles, both the size and χ(3) can be extracted from a simple set of measurements

    Extremely efficient direct third harmonic generation in thin nanostructured films of ZnO

    No full text
    International audienceWe report a very efficient nonlinear optical conversion in thin films of wide band-gap materials. Very high conversion efficiency to the third harmonic radiation is achieved for an unamplified femtosecond Cr4+:forsterite laser in a sub-micron-thick film of a nanocrystalline ZnO pulsed-laser deposited on a fused silica substrate. Both the nonlinear optical coefficient and the coherence length are measured for film composed of 10-nm nanoclusters

    Nonlinear optics of molecular nanostructures in solution: Assessment of the size and nonlinear optical properties

    No full text
    Most of the known self-assembly processes occur in solution, where nanosized objects interact each other forming new structures. Their real-time characterization in terms of the size and optical properties of these objects is vital for understanding those interactions. We report a novel application of nonlinear optics to study molecular structures and assemblies. By measuring the power of the third harmonic generated in a solution of nanoparticles, we determined both the size and the third-order nonlinear optical susceptibility of those nanoparticles. The newly developed technique was successfully employed to observe the structural organization of collagen (type I) molecules in solution

    FLIM of NAD(P)H in Lymphatic Nodes Resolves T-Cell Immune Response to the Tumor

    No full text
    Assessment of T-cell response to the tumor is important for diagnosis of the disease and monitoring of therapeutic efficacy. For this, new non-destructive label-free methods are required. Fluorescence lifetime imaging (FLIM) of metabolic coenzymes is a promising innovative technology for the assessment of the functional status of cells. The purpose of this work was to test whether FLIM can resolve metabolic alterations that accompany T-cell reactivation to the tumors. The study was carried out on C57Bl/6 FoxP3-EGFP mice bearing B16F0 melanoma. Autofluorescence of the immune cells in fresh lymphatic nodes (LNs) was investigated. It was found that fluorescence lifetime parameters of nicotinamide adenine dinucleotide (phosphate) NAD(P)H are sensitive to tumor development. Effector T-cells in the LNs displayed higher contribution of free NADH, the form associated with glycolysis, in all tumors and the presence of protein-bound NADPH, associated with biosynthetic processes, in the tumors of large size. Flow cytometry showed that the changes in the NADH fraction of the effector T-cells correlated with their activation, while changes in NADPH correlated with cell proliferation. In conclusion, FLIM of NAD(P)H in fresh lymphoid tissue is a powerful tool for assessing the immune response to tumor development

    Red Light-Emitting Water-Soluble Luminescent Iridium-Containing Polynorbornenes: Synthesis, Characterization and Oxygen Sensing Properties in Biological Tissues In Vivo

    No full text
    New water-soluble polynorbornenes P1–P4 containing oligoether, amino acid groups and luminophoric complexes of iridium(III) were synthesized by ring-opening metathesis polymerization. The polymeric products in organic solvents and in water demonstrate intense photoluminescence in the red spectral region. The polymers P1 and P3 with 1-phenylisoquinoline cyclometalating ligands in iridium fragments reveal 4–6 fold higher emission quantum yields in solutions than those of P2 and P4 that contain iridium complexes with 1-(thien-2-yl)isoquinoline cyclometalating ligands. The emission parameters of P1–P4 in degassed solutions essentially differ from those in the aerated solutions showing oxygen-dependent quenching of phosphorescence. Biological testing of P1 and P3 demonstrates that the polymers do not penetrate into live cultured cancer cells and normal skin fibroblasts and do not possess cytotoxicity within the concentrations and time ranges reasonable for biological studies. In vivo, the polymers display longer phosphorescence lifetimes in mouse tumors than in muscle, as measured using phosphorescence lifetime imaging (PLIM), which correlates with tumor hypoxia. Therefore, preliminary evaluation of the synthesized polymers shows their suitability for noninvasive in vivo assessments of oxygen levels in biological tissues

    Simultaneous Probing of Metabolism and Oxygenation of Tumors In Vivo Using FLIM of NAD(P)H and PLIM of a New Polymeric Ir(III) Oxygen Sensor

    No full text
    Tumor cells are well adapted to grow in conditions of variable oxygen supply and hypoxia by switching between different metabolic pathways. However, the regulatory effect of oxygen on metabolism and its contribution to the metabolic heterogeneity of tumors have not been fully explored. In this study, we develop a methodology for the simultaneous analysis of cellular metabolic status, using the fluorescence lifetime imaging microscopy (FLIM) of metabolic cofactor NAD(P)H, and oxygen level, using the phosphorescence lifetime imaging (PLIM) of a new polymeric Ir(III)-based sensor (PIr3) in tumors in vivo. The sensor, derived from a polynorbornene and cyclometalated iridium(III) complex, exhibits the oxygen-dependent quenching of phosphorescence with a 40% longer lifetime in degassed compared to aerated solutions. In vitro, hypoxia resulted in a correlative increase in PIr3 phosphorescence lifetime and free (glycolytic) NAD(P)H fraction in cells. In vivo, mouse tumors demonstrated a high degree of cellular-level heterogeneity of both metabolic and oxygen states, and a lower dependence of metabolism on oxygen than cells in vitro. The small tumors were hypoxic, while the advanced tumors contained areas of normoxia and hypoxia, which was consistent with the pimonidazole assay and angiographic imaging. Dual FLIM/PLIM metabolic/oxygen imaging will be valuable in preclinical investigations into the effects of hypoxia on metabolic aspects of tumor progression and treatment response
    corecore