246 research outputs found

    Comment on the ``θ\theta-term renormalization in the (2+1)-dimensional CPN−1CP^{N-1} model with θ\theta term''

    Full text link
    It is found that the recently published first coefficient of nonzero β\beta-function for the Chern-Simons term in the 1/N1/N expansion of the CPN−1CP^{N-1} model is untrue numerically. The correct result is given. The main conclusions of Park's paper are not changed.Comment: 3 pages, LATE

    The 16th moment of the three loop anomalous dimension of the non-singlet transversity operator in QCD

    Full text link
    We present the result of the three loop anomalous dimension of non-singlet transversity operator in QCD for the Mellin moment N=16. The obtained result coincides with the prediction from arXiv:1203.1022 and can serve as a confirmation of the correctness of the general expression for three loop anomalous dimension of non-singlet transversity operator in QCD for the arbitrary Mellin moment.Comment: 7 pages, 1 figure, minor changes in the tex

    Supersymmetric null-surfaces

    Get PDF
    Single trace operators with the large R-charge in supersymmetric Yang-Mills theory correspond to the null-surfaces in AdS5×S5AdS_5\times S^5. We argue that the moduli space of the null-surfaces is the space of contours in the super-Grassmanian parametrizing the complex (2∣2)(2|2)-dimensional subspaces of the complex (4∣4)(4|4)-dimensional space. The odd coordinates on this super-Grassmanian correspond to the fermionic degrees of freedom of the superstring.Comment: v4: added a reference to the earlier work; corrected the formula for the stabilizer of the BMN vacuum; added the discussion of the complex structure of the odd coordinates in Section 3.

    Understanding hadronic gamma-ray emission from supernova remnants

    Full text link
    We aim to test the plausibility of a theoretical framework in which the gamma-ray emission detected from supernova remnants may be of hadronic origin, i.e., due to the decay of neutral pions produced in nuclear collisions involving relativistic nuclei. In particular, we investigate the effects induced by magnetic field amplification on the expected particle spectra, outlining a phenomenological scenario consistent with both the underlying Physics and the larger and larger amount of observational data provided by the present generation of gamma experiments, which seem to indicate rather steep spectra for the accelerated particles. In addition, in order to study to study how pre-supernova winds might affect the expected emission in this class of sources, the time-dependent gamma-ray luminosity of a remnant with a massive progenitor is worked out. Solid points and limitations of the proposed scenario are finally discussed in a critical way.Comment: 30 pages, 5 figures; Several comments, references and a figure added. Some typos correcte

    Spectrum and transition rates of the XX chain analyzed via Bethe ansatz

    Get PDF
    As part of a study that investigates the dynamics of the s=1/2 XXZ model in the planar regime |Delta|<1, we discuss the singular nature of the Bethe ansatz equations for the case Delta=0 (XX model). We identify the general structure of the Bethe ansatz solutions for the entire XX spectrum, which include states with real and complex magnon momenta. We discuss the relation between the spinon or magnon quasiparticles (Bethe ansatz) and the lattice fermions (Jordan-Wigner representation). We present determinantal expressions for transition rates of spin fluctuation operators between Bethe wave functions and reduce them to product expressions. We apply the new formulas to two-spinon transition rates for chains with up to N=4096 sites.Comment: 11 pages, 4 figure

    Exact noncommutative solitons in p-adic strings and BSFT

    Full text link
    The tachyon field of p-adic string theory is made noncommutative by replacing ordinary products with noncommutative products in its exact effective action. The same is done for the boundary string field theory, treated as the p -> 1 limit of the p-adic string. Solitonic lumps corresponding to D-branes are obtained for all values of the noncommutative parameter theta. This is in contrast to usual scalar field theories in which the noncommutative solitons do not persist below a critical value of theta. As theta varies from zero to infinity, the solution interpolates smoothly between the soliton of the p-adic theory (respectively BSFT) to the noncommutative soliton.Comment: 1+14 pages (harvmac b), 1 eps figure, v2: references added, typos correcte

    Bouncing and Accelerating Solutions in Nonlocal Stringy Models

    Full text link
    A general class of cosmological models driven by a non-local scalar field inspired by string field theories is studied. In particular cases the scalar field is a string dilaton or a string tachyon. A distinguished feature of these models is a crossing of the phantom divide. We reveal the nature of this phenomena showing that it is caused by an equivalence of the initial non-local model to a model with an infinite number of local fields some of which are ghosts. Deformations of the model that admit exact solutions are constructed. These deformations contain locking potentials that stabilize solutions. Bouncing and accelerating solutions are presented.Comment: Minor corrections, references added, published in JHE

    Cosmic-ray acceleration in supernova remnants: non-linear theory revised

    Full text link
    A rapidly growing amount of evidences, mostly coming from the recent gamma-ray observations of Galactic supernova remnants (SNRs), is seriously challenging our understanding of how particles are accelerated at fast shocks. The cosmic-ray (CR) spectra required to account for the observed phenomenology are in fact as steep as E−2.2−−E−2.4E^{-2.2}--E^{-2.4}, i.e., steeper than the test-particle prediction of first-order Fermi acceleration, and significantly steeper than what expected in a more refined non-linear theory of diffusive shock acceleration. By accounting for the dynamical back-reaction of the non-thermal particles, such a theory in fact predicts that the more efficient the particle acceleration, the flatter the CR spectrum. In this work we put forward a self-consistent scenario in which the account for the magnetic field amplification induced by CR streaming produces the conditions for reversing such a trend, allowing --- at the same time --- for rather steep spectra and CR acceleration efficiencies (about 20%) consistent with the hypothesis that SNRs are the sources of Galactic CRs. In particular, we quantitatively work out the details of instantaneous and cumulative CR spectra during the evolution of a typical SNR, also stressing the implications of the observed levels of magnetization on both the expected maximum energy and the predicted CR acceleration efficiency. The latter naturally turns out to saturate around 10-30%, almost independently of the fraction of particles injected into the acceleration process as long as this fraction is larger than about 10−410^{-4}.Comment: 24 pages, 5 figures, accepted for publication in JCA

    Two-Loop Diagrammatics in a Self-Dual Background

    Full text link
    Diagrammatic rules are developed for simplifying two-loop QED diagrams with propagators in a constant self-dual background field. This diagrammatic analysis, using dimensional regularization, is used to explain how the fully renormalized two-loop Euler-Heisenberg effective Lagrangian for QED in a self-dual background field is naturally expressed in terms of one-loop diagrams. The connection between the two-loop and one-loop vacuum diagrams in a background field parallels a corresponding connection for free vacuum diagrams, without a background field, which can be derived by simple algebraic manipulations. It also mirrors similar behavior recently found for two-loop amplitudes in N=4 SUSY Yang-Mills theory.Comment: 16 pp, Latex, Axodra
    • …
    corecore