3 research outputs found

    Easily Processable Highly Ordered Langmuir-Blodgett Films of Quaterthiophene Disiloxane Dimer for Monolayer Organic Field-Effect Transistors

    No full text
    Self-assembly of highly soluble water-stable tetramethyldisiloxane-based dimer of α,α′-dialkylquaterthiophene on the water–air interface was investigated by Langmuir, grazing incidence X-ray diffraction, and X-ray reflectivity techniques. The conditions for formation of very homogeneous crystalline monolayer Langmuir-Blodgett (LB) films of the oligomer were found. Monolayer organic field-effect transistors (OFETs) based on these LB films as a semiconducting layer showed hole mobilities up to 3 × 10<sup>–3</sup> cm<sup>2</sup>/(V s), on–off ratio of 10<sup>5</sup>, small hysteresis, and high long-term stability. The electrical performance of the LB films studied is close to that for the same material in the bulk or in the monolayer OFETs prepared from water vapor sensitive chlorosilyl derivatives of quaterthiophene by self-assembling from solution. These findings show high potential of disiloxane-based LB films in monolayer OFETs for large-area organic electronics

    Molecularly Smooth Single-Crystalline Films of Thiophene–Phenylene Co-Oligomers Grown at the Gas–Liquid Interface

    No full text
    Single crystals of thiophene–phenelyne co-oligomers (TPCOs) have previously shown their potential for organic optoelectronics. Here we report on solution growth of large-area thin single-crystalline films of TPCOs at the gas–liquid interface by using solvent–antisolvent crystallization, isothermal slow solvent evaporation, and isochoric cooling. The studied co-oligomers contain identical conjugated core (5,5′-diphyenyl-2,2′-bithiophene) and different terminal substituents, fluorine, trimethylsilyl, or trifluoromethyl. The fabricated films are molecularly smooth over areas larger than 10 × 10 μm<sup>2</sup>, which is of high importance for organic field-effect devices. The low-defect structure of the TPCO crystals is suggested from the monoexponential kinetics of the PL decay measured in a wide dynamic range (up to four decades) and from low crystal mosaicity assessed by microfocus X-ray diffraction. The TPCO crystal structure is solved using a combination of X-ray and electron diffraction. The terminal substituents affect the crystal structure of TPCOs, bringing about the formation of a noncentrosymmetric crystal lattice with a crystal symmetry <i>Cc</i> for the bulkiest trimethylsilyl terminal groups, which is unusual for linear conjugated oligomers. Comparing the different crystal growth techniques, it is concluded that the solvent–antisolvent crystallization is the most robust for fabrication of single-crystalline TPCOs films. The possible nucleation and crystallization mechanisms operating at the gas–solution interface are discussed

    Luminescent Organic Semiconducting Langmuir Monolayers

    Get PDF
    In recent years, monolayer organic field-effect devices such as transistors and sensors have demonstrated their high potential. In contrast, monolayer electroluminescent organic field-effect devices are still in their infancy. One of the key challenges here is to create an organic material that self-organizes in a monolayer and combines efficient charge transport with luminescence. Herein, we report a novel organosilicon derivative of oligothiophene–phenylene dimer <b>D2-Und-PTTP-TMS</b> (D2, tetramethyldisiloxane; Und, undecylenic spacer; P, 1,4-phenylene; T, 2,5-thiophene; TMS, trimethylsilyl) that meets these requirements. The self-assembled Langmuir monolayers of the dimer were investigated by steady-state and time-resolved photoluminescence spectroscopy, atomic force microscopy, X-ray reflectometry, and grazing-incidence X-ray diffraction, and their semiconducting properties were evaluated in organic field-effect transistors. We found that the best uniform, fully covered, highly ordered monolayers were semiconducting. Thus, the ordered two-dimensional (2D) packing of conjugated organic molecules in the semiconducting Langmuir monolayer is compatible with its high-yield luminescence, so that 2D molecular aggregation per se does not preclude highly luminescent properties. Our findings pave the way to the rational design of functional materials for monolayer organic light-emitting transistors and other optoelectronic devices
    corecore