1,124 research outputs found

    3D Boundary Layer Theory

    Get PDF
    Some new analytical results in 3D boundary layer theory are reviewed and discussed. It includes the perturbation theory for 3D flows, analyses of 3D boundary layer equation singularities and corresponding real flow structures, investigations of 3D boundary layer distinctive features for hypersonic flows for flat blunted bodies including the heat transfer and the laminar-turbulent transition and influences of these phenomena on flows, and the new approach to the analysis of the symmetric flow instability over thin bodies and studies of the control possibility with the electrical discharge using new model of this phenomenon interaction with the 3D boundary layer. Some new analytical solutions of boundary layer and Navier-Stokes equations are presented. Applications of these results to analyze viscous flow characteristics of real objects such as aircraft wings, fuselages, and other bodies are considered

    Mirrorless Negative-index Parametric Micro-oscillator

    Full text link
    The feasibility and extraordinary properties of mirrorless parametric oscillations in strongly absorbing negative-index metamaterials are shown. They stem from the backwardness of electromagnetic waves inherent to this type of metamaterials.Comment: 4 pages, 2 figure

    Nanophotonics with Surface Plasmons

    Get PDF

    Translation of Nanoantenna Hot-Spots by a Metal-Dielectric Composite Superlens

    Get PDF
    We employ numerical simulations to show that highly localized, enhanced electromagnetic fields, also known as "hot spots," produced by a periodic array of silver nanoantennas can be spatially translated to the other side of a metal-dielectric composite superlens. The proposed translation of the hot spots enables surface-enhanced optical spectroscopy without the undesirable contact of molecules with metal, and thus it broadens and reinforces the potential applications of sensing based on field-enhanced fluorescence and surface-enhanced Raman scattering.Comment: 9 pages, 4 figure

    Colloidal Plasmonic Titanium Nitride Nanoparticles: Properties and Applications

    Get PDF
    Optical properties of colloidal plasmonic titanium nitride nanoparticles are examined with an eye on their photothermal via transmission electron microscopy and optical transmittance measurements. Single crystal titanium nitride cubic nanoparticles with an average size of 50 nm exhibit plasmon resonance in the biological transparency window. With dimensions optimized for efficient cellular uptake, the nanoparticles demonstrate a high photothermal conversion efficiency. A self-passivating native oxide at the surface of the nanoparticles provides an additional degree of freedom for surface functionalization.Comment: 17 pages, 4 figures, 1 abstract figur

    Merging Nonlinear Optics and Negative-Index Metamaterials

    Full text link
    The extraordinary properties of nonlinear optical propagation processes in double-domain positive/negative index metamaterials are reviewed. These processes include second harmonic generation, three- and four-wave frequency mixing, and optical parametric amplification. Striking contrasts with the properties of the counterparts in ordinary materials are shown. We also discuss the possibilities for compensating strong losses inherent to plasmonic metamaterials, which present a major obstacle in numerous exciting applications, and the possibilities for creation of unique ultracompact photonic devices such as data processing chips and nonlinear-optical sensors. Finally, we propose similar extraordinary three-wave mixing processes in crystals based on optical phonons with negative dispersion.Comment: A review paper, 27 pages, 16 figures, 81 reference
    • …
    corecore