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Chapter

3D Boundary Layer Theory

Vladimir Shalaev

Abstract

Some new analytical results in 3D boundary layer theory are reviewed and
discussed. It includes the perturbation theory for 3D flows, analyses of 3D boundary
layer equation singularities and corresponding real flow structures, investigations of
3D boundary layer distinctive features for hypersonic flows for flat blunted bodies
including the heat transfer and the laminar-turbulent transition and influences of
these phenomena on flows, and the new approach to the analysis of the symmetric
flow instability over thin bodies and studies of the control possibility with the
electrical discharge using new model of this phenomenon interaction with the 3D
boundary layer. Some new analytical solutions of boundary layer and Navier-Stokes
equations are presented. Applications of these results to analyze viscous flow char-
acteristics of real objects such as aircraft wings, fuselages, and other bodies are
considered.

Keywords: 3D boundary layer, asymptotic perturbation theory, singularities,
flow structures, applications

1. Introduction

Despite the intensive development of computer technologies and numerical
methods for the Navier-Stokes and Reynolds equations, problems of the three-
dimensional boundary layer are of significant interest in the fluid dynamics. So far
these problems have been little studied as a result of objective difficulties related
with the large dimensionality and complexity of equations. Therefore, analytic
results in this field can play an important role in the depth understanding of fluid
dynamics phenomena and their study. In this part, some modern results in the
three-dimensional boundary layer theory are discussed.

The small perturbation theory for inviscid flows is well developed and widely
applied to estimate aerodynamic characteristics of real flight apparatus. Also it has
been attempted to develop such theory for the boundary layer [1]. However, the
zero approximation (“flat plate” approximation, zero cross-flow approximation)
only given a rational contribution and were used in calculations. Equations for
perturbations were complex. They required a numerical solution that was not much
simpler than the full equation system. Father investigations of three-dimensional
effects in the boundary layer theory became possible only after developments of
computers with the enough power, numerical methods, and turbulence models [2].

Another approach was developed on the base of the rational perturbation theory
including the first-order approximation [3-10] for some class of flows, such as
flows over aircraft wings and fuselages at small angle of attack, which have high
importance as for the theory and the practice. In this case, zero-order approxima-
tion functions do not depend on the cross coordinate. Equations of the first-order
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approximation reduce to a two-dimensional system by introducing a new variable.
The cross coordinate is included to this system as a parameter. This property of the
self-similarity simplifies the solution procedures allowing to apply two-dimensional
numerical methods and to reduce computing resources.

The singularity in the solution of 2D steady boundary layer equation is well
known as the separation. Singularities arising in solutions of unsteady or 3D laminar
boundary layer equations are not related directly with the flow separation and are
slightly studied due to difficulties of analytical investigations of complex equations
and uncertainty of numerical result treatments. However, this task is of interest for
the mathematical physics and for numerical modeling of aerodynamic applications.
For the first time, a singularity was found in the solution of 2D unsteady BL
equations for the flow around the flat plate impulsively set into motion [12]. The
singularity of the similar type was discovered on the side edge of a quarter flat plate
in a uniform freestream [13] and at a collision of two jets [14]. In Ref. [15],
necessary conditions were formulated for a singularity formation in self-similar
solutions of the unsteady model and 3D incompressible laminar boundary layers on
a flat surface with pressure gradients. Sufficient conditions and singularity types
were not studied, and real flow conditions were not considered. Singularities of
numerical solutions (the nonuniqueness or the absence of a solution) were found
for the laminar boundary layer in the leeward symmetry plane on a round cone at
incidence [16-18]. Similar results were obtained inside the computation region of
the 3D turbulent boundary layer on the swept wing [19]. The singular behavior of
boundary layer characteristics (the skin friction tends to the infinity in the symme-
try plan) was found for the boundary layer on the small span delta wing [8, 10]. The
explanation of these phenomena was found on the base of analytical solutions of
laminar boundary layer equations on conical surfaces [10, 21-24]. The asymptotic
flow structure on the base of Navier-Stocks equations in the singularity vicinity is
constructed.

The problem of the flow separation control using plasma actuators on the base of
the electrical discharge is assumed as a perspective aerodynamic instrument
[26-28]. It is considered as a one method for the control of the separated flow
asymmetry near the nose part of aircrafts. The problem was complicated by the
absence of an adequate model for the boundary layer-discharge interaction and a
criterion for flow asymmetry arising. The use as a criterion numerical results and
experimental data is restricted as a result of the high sensitivity of the asymmetry
origin to different parameters [29]. Solution of these problems was obtained with
the development of new models [30-34].

2. Small perturbation theory for three-dimensional boundary layer

As follows from the cross-flow impulse equation in biorthogonal coordinates
[2], the necessary conditions for a small cross velocity (Jjw| < < 1) are the relations

1 op €

leaZNCOSHNk1~/1<<1. (1)
The small parameter ¢ characterizes the gradient of the pressure p(¢,x,2) with

respect to transverse nondimensional coordinate z; ¢ and x here are dimensionless

time and longitudinal coordinate, 4 is body span, H is metric coefficient, k; is

longitudinal coordinate line curvature, and @ is the angle between coordinate lines

on the body surface. Using these conditions flow parameters in the 3D boundary

layer are presented by asymptotic expansions:
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Vi = 0o (L,S) + evypa(,5,2), hy = hyo(t,s) + ehyp(t,s,2), w = %wl(t,s,n,z),
V = (u,v,h,p,u,x) = Vo(t,s,n) + eVi(t,s,n,z) + &Vn(t,s,n,2).
(2)

Here, 5(¢,x,2) is a dimensionless length of the coordinate line 2 = const measured
from the critical point x, (¢, 2); # is normal coordinate transformed with Dorodnitsyn
transformation; v,, (¢, x,2) and h,,(t,x,2) are blow (suction) velocity and the surface
temperature; # and v, 4, p, k and u are dimensionless longitudinal and normal
velocities, enthalpy, density, thermal conductivity, and viscosity. The parameter
€1 < <1is not known a priori, it describes own flow perturbations inside the
boundary layer. The following is found from the analysis of equations: for thin
wings e; = /4%, for slightly asymmetric bodies & characterizes the asymmetry and
€1 = a* /A, where 1 is relative body thickness [4-10].

To calculate boundary layer characteristics, the equation system for the com-
posite solution incorporated in all terms of asymptotic expansion (2) was derived:

p{a—u-l- (u ﬂw> as-l-v%} -l-%—i,u%

ot JH, on| o on" om’

oh  ( pw\oh  oh] _ 0 xoh
Plor JH,) s " "on] ~ onProm

2
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% w0k k _ 2,0
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AH, (az & as)Jrcosea (3)
., %, ,% %, _9,%_
”{aﬁ”as”an —haug| =5 MG,

Jd| 1 fop ap4 0% _w
6zL1H2(az i s) cosf50 ) q(tsm7) =50
dp dpu  Opv 1 B
at+85+dn+/1H( ) — Jeopu = 0,

oh
n=0:u=w=0, v=0,(tx,2), h =h,(tx,2) <% H O),

n— o0 u=1ultxz), w=w/txz), h=h(xz2).

Eq. (3) is not true in the vicinity of the wing leading edge, where the pressure
perturbation has the singularity. Using the asymptotic theory, singular regions near
blunted and sharp leading edges were analyzed. It was found that the boundary
layer in these regions is described by equations for the boundary layer on the sweep
parabola or wedge. On a body the boundary layer begins in the critical point.

The system (2) was applied to the solution of different problems for wings and
bodies [4-10]. To illustrate the developed approach in Figures 1 and 2, calculations
of displacement thicknesses (Figure 1) and skin frictions (Figure 2) on the wind
tunnel model of the US Air Force fighter TF-8A supercritical wing at Mach numbers
M = 0.99 and 0.5 are presented. Solid lines correspond to solutions of Eq. (3) for the

wing model (Re = 2.246 - 10%); dotted lines on Figure 4 are results for full scale

wing (Re =2.58 - 107); symbols present solutions of full 3D boundary layer
equations [11].
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Figure 1.
Displacement thickness distributions on the model of supercritical wing; M = 0.99, Re = 2.246 - 10°,
and o =3.12".

Figure 2.
Skin friction distributions on the model of supercritical wing; M = 0.5, a* = 12.09°, Re = 2.246 - 10°
(solid lines), and Re = 2.58 - 107 (dotted lines).

These figures demonstrate that the asymptotic solution very well reproduce
numerical results as for the skin friction and for displacement thicknesses in the
large parameter diapason.

3. Singularities in solutions of three-dimensional boundary layer
equations

The laminar boundary layer problem on a thin round cone with the half apex
angle §. < <1 at the angle of attack a* depends on the parameter k = 4a*/(36,)
only. Firstly, analytical results about singularities were obtained for outer BL
part for a such cone. It is understood from previous works [15-18, 20], the
singularity can arise when two subcharacteristic (streamlines) families collided
—this is a necessary condition. Such situation arises usually in the leeward
symmetry (runoff) plane over a body of revolution at an angle of attack.
Unusual properties in numerical solutions of self-similar equations in this plane
for a round slender cone in supersonic freestreams were studied in many works
due to the practical interest of the heat exchange on flying vehicles head parts
[16-18, 20]. In this case, one parameter defines the flow. Two solutions were
found in the windward symmetry (attachment) plane and at small angles of
attack (k<k.) in the leeward symmetry plane. In this plane, no solutions were
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obtained at moderate angles of attack (k. <k <2/3) and many solutions at larger
incidences up to BL separation (2/3 <k <1). Full BL equation solutions with
initial conditions in the windward symmetry plane fixed the violation of sym-
metry conditions in the runoff plane, a velocity jump through this plane in the
angle of attack diapason, when the self-similar solution has been absent

[10, 21]. The task for the cone was solved numerically on the base of
parabolized Navier-Stokes equations, without the streamwise viscous diffusion
[20]. However the problem is retained since the flow structure and reasons of
unusual BL properties have not been explained.

Analytical solutions of full equations for the outer BL part on the slender round
cone with initial conditions in the windward symmetry plane showed the singular-
ity presence in the leeward symmetry plane of the logarithmic type at £ = 1/3 and
of a power type at k >1/3 [10, 21]. It had been shown numerical solutions provided
incorrect results near the singularity due to the accuracy loss. Similar but more
complex results were obtained for arbitrary cones; they allow defining the sufficient
conditions of the singularity arising [10, 22]. The asymptotic flow structure at large
Reynolds number near the singularity on the base of Navier-Stokes equations was
constructed, and analytical solutions in different asymptotic regions were obtained,
which were matched with BL solutions. The analysis of the viscous-inviscid inter-
action region, in particular, revealed that the singularity can arise not only in self-
similar but in full 3D BL equations [10, 22]. The theory showed that the singularity
appearance relates with eigensolutions of the BL equations appearing near the
runoff plane; it also explained numerical modeling results on the base of
parabolized Navier-Stokes equations.

In the outer BL part, the theory gives the critical angle of attack for the singu-
larity appearance k. = 1/3. However calculations showed that this parameter is a
function on numbers of Mach M and Prandtl Pr and the wall temperature 4,,,
ke = k.(My, Pr,h,,) [10]. This indicates that a singularity can arise in the near-wall
region. The series decomposition of the near-wall solution in the runoff plane
showed the presence of a parameter «, the linear combination of skin friction
components, and the sign change of which leads to the change of the physical flow

14+
1.2+
1.b
D.3
D&
D4

D.D
p0 PS5 1D 15 20 25 3P 35 4D 45 5D

Figure 3.
Solutions of boundary layer equations (dotted lines) and parabolized Navier-Stokes equations (solid lines).
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topology near this plane [24]. The analysis of BL equations in the near-wall region
showed that @ = 0 corresponds to the critical value k., and it was confirmed by all
published numerical calculations [16-18, 20]. In the runoff plane, the new power
type singularity in solutions of full BL equations revealed that it is related with the
eigensolutions appearing near this plane. Calculation results for BL on delta wing
confirm the singularity presence.

3.1 Self-similar boundary layer on a cone

The 3D laminar boundary layer on a conical surface in the orthogonal coordinate
system xy¢ (Figure 3) is described by following self-similar equations and bound-
ary conditions [10, 22]:

Uy, = Awu, +vu, + Aw(u — w),

2 2
wy, = Aww,, + vw, +w(§u +Kw> — h(g—l—K),

hyy = A’I/Uh(p + Uhy — Me (u)zl —+ §A1wj>, ph = 1,

2
5 oo l (4)
Pelhe J y 2 _ Poolheo
=¢ pd—, Re=¢e " = s
4 2, ) ! Hoo

1
£y =g =, v =f  [K= 3Aln (puu)), |¢ - 4,
y=0: u=v=w=0,h=hy(hy=0);y=c0:u=w=h=1

Equation coefficients are defined by expressions

2
M.(p) = (y — DML, K(p) = 22,
© h, 3Ru,
2w 2 (w 2 )
Ap) = 3Ru,’ Ai(p) = 3 (u—e>

In these equations, to reduce formulas, Pr = 1 and the linear dependence of the
viscosity on the temperature (pu = 1) are assumed. Indexes y and ¢ denote deriva-
tives with respect to the corresponding variables; x is the distance from the body
nose along the generator referenced to the body length /; y is the Dorodnitsyn
variable; y* is normal to the body surface; ¢ is the transversal coordinate, and it can
be the polar angle for a round cone; f(y, ) and g(y, @) are longitudinal and trans-
verse stream functions; v(y, ¢) is transformed normal velocity; and R(¢) is the
metric coefficient. The density p, the enthalpy #, the viscosity u, the longitudinal «,
and transversal w velocities are referenced to the values at the outer boundary
indexed by e, which are normalized to their freestream values indexed by co; they
are functions of ¢ only. The transversal velocity on the outer boundary layer edge
w, = 0 in the initial value plane (the attachment plane) ¢ = 0, in which K(0) >0,
and in the runoff plane ¢ = ¢, in which K(¢;) = —k <0, and two boundary layer
parts that came from different sides of the attachment plane collided. For the round
cone, ¢, = 7.

Eq. (4) is simplified for slender bodies since in this case, ., = p, = p, = 1,

A1 < <1. Neglecting proportional to A; terms in (4), we obtain the Crocco integral
for the enthalpy and momentum equations in the form
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1 1
h=hy+hu —EMeuz, hy =1—hy, +§Me,

M, = (y — DM v = — (f + Kg + 4g, ),

Uy, = Awu, + vuy,

(6)
2 2
wy, = Aww,, +vw, + w<§u +Kw) —h <§ +K).
For the slender round cone with the apex half angle §, < < 1 at the angle of attack

a*, simple expressions for outer functions are

4a*
36

c

@)

w, =2a" sinp, K(p) =kcosq, A(p) =ksing, k =

3.2 Singularities in the outer boundary layer region

In the outer boundary layer region, y > 1, (y is the Dorodnitsyn variable normal
to the wall), flow functions are represented as [17, 36]

u=14+U(n, @), w=1+W(n,¢), n=_y —35)//alp),

1 1 (8)
h=1+H=1- (5M6+hw—1>U—§MeU2

Here 6(¢p) is the displacement thickness defined by the equation of F. Moore [6],
the function a(¢) is found from the local self-similarity condition, and U < <1 and
W < <1 are velocity perturbations with respect to boundary conditions, which in
the first-order approximation satisfy to equations [10, 21]

2 13 2
Uy +nU, —aAU, =0, W,, +3yW, — 34 {EAW(,, +(1+3K)W| = gap(go)U.
)

These equations have solutions:

U(n, @) = Crerfc(n/v?2)
W(n, ) = —b(@)U, Wi(n,9) = —b(9)U + B1(k)V (1, )

Constants C; and B; are calculated from matching condition with a numeri-
cal solution inside the boundary layer. These solutions satisfy to initial condi-
tions in the attachment plane and must tend to zero at # — oo. The function
V(n, ) is the solution of the homogeneous equation for the cross-velocity per-
turbation, when the right-hand side equals to zero; it is expressed by Veber-
Hermite functions [21]. The coefficient B; ~ 1/K(0) has the singularity at
K(0) — 0. For the round cone this limit corresponds to zero angle of attack; in
this case, the analytical expression for W1(n, ¢) shows the presence of the power
type singularity in the leeward plane ¢ = ¢, [10, 21]. The first solution W (z, ¢)
is regular in this limit, and its behavior is defined by functions a(¢) and b(¢),
which satisfy to equations [10, 21, 22]

(10)

3 1
weby +2(1+ M)w,yb = 2pMw, , p(¢) =1+ (1 + §K> (iMe +hy — 1), (1)

wea, +2(N + Dw,,a = 2Nw,,, N(¢) = 3M(p) =K.
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Solutions of these equations with initial conditions in the attachment plane are
represented in integral forms in the general case and have analytical expressions for
the round cone [10, 21]. Their properties near the leeward plane, at
{ = ¢, — ¢ < <1, are represented by expressions

3 _
we = SRR, k= —K(g1), R =R(g1), py =p(n), n =3m = —K " (g),

m#A1:b= % — b, =1:b = —2p.In¢ + by, (12)

n*1l: a :nn—l—l—angz("_l), n=1: a=-2In{+aq

Here a,, and b,, are known coefficients [10, 21]. These formulas are true for non-
slender bodies also [10, 22, 23].

These results show the presence in the outer BL part of two singularity types
in the leeward plane related with properties of functions a(¢) and b(¢). For
k <1 the function U(#,{) exists at { = 0 but reaches this limit irregularly; its
behavior is studied analytically in details for the slender round cone [10, 21].
For k>1 the function U(n, () is singular at { — 0 since 4({) — oo and the BL

thickness tend to infinity as \/a((): the logarithmic singularity type takes place
at k =1, and it is of the power type at k >1. At k>1 the flow separation is
observed in experimental and numerical studies; this phenomenon changes not
only the outer part but also the inner boundary layer structure. It should be
noted that such behavior of velocity viscous perturbations near the BL outer
part at the separation development is a new property in the comparison with
the 2D flows.

The function W(#, {) has irregular but finite limit in the leeward plane for { — 0
at k <1/3. This limit is singular at & >1/3: the singularity has the logarithmic or
power type, if k =1/3 or k >1/3. At 1/3 <k <1 the singularity is related with the
behavior of cross-flow velocity only. This singularity leads to the longitudinal vor-
tex component strengthening in the outer part of the viscous region. The singularity
takes place, if the pressure gradient is negative (k <2/3) or positive (k >2/3). It is
formed by BL proper solutions, which have homogeneous conditions on both
boundaries and arise near the runoff plane. The critical value k., = 1/3 for the outer
BL part is undependable on the wall temperature and Mach and Prandtl numbers;
however the considered singularities define the real flow structure near the leeward
plane atk>1/3 [17, 36, 37].

3.3 Asymptotic flow structure near the singularity

Due to the irregularity of solutions already at £ >1/6 (m <2), the vortex bound-

ary region near the runoff plane is formed with transverse dimension ¢ ~ e7; at

m ~ 1 this value is of the order of the BL thickness ¢. In this region, the transverse
diffusion is the effect of the first order, and to describe it we introduce the following
variables:

(NI

e1 = [3Rep, (¢1)ue (1) /1o (1)) . (13)
z = VkxRC /ey, u = u(y,2), h=h(y,2), w=w(y,2)
Using these variables from Navier-Stokes equations at { ~ ¢; < <1 for this

region, we derive self-similar equations, which in its outer part, at y > 1, reduce to
the form
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Uyy + kUz + (1 - k)yU, + keU; = 0,

14
Wy +kWz + (1 - kW, + (2 +kz) W, +2k(m —1)W + %plU =0 (14)

For k <1 these equations have the solution corresponding to the regularatk — 0
solution of BL equations:

U(y,z) = Crerfe(y\/(1 = k)/2)erf (2/V2), W = —B(z)Crerfe(y\/(1 - k)/2),
B, + <§ —I—Z)BZ —2(m — 1)B = —2mp,F(z), F(z) = erf(z/v2)

(15)
The function B(z) is expressed by Kummer’s function ®(a, b,x) [10, 22, 23]:

2(1-m)
B = mp,By(z) —i—Bm(I)(l—m,%,—%zz), B,, = b,, <R\/la/e1) ) (16)

By (z) is a particular solution of the inhomogeneous equation; the coefficient B,,
is determined from matching condition.

In Figure 4, comparisons of solutions of BL (dotted lines) and Navier-Stokes
(solid lines) equations for m = 1/2 (curves 1 and 2) and m = 1 (curves 3 and 4) are
presented. It is seen that regular solutions of Navier-Stokes equations are converged
quickly to singular solutions of BL equations.

Another effect generated by the singularity at £ >1/3 due to the BL growth at
¢ — 0 is the viscous-inviscid interaction. This effect is important in the
region, where the inviscid and induced cross velocities have same orders;
this condition defines the transverse dimension of the region Ag and the
velocity scale:

Ap ~ Vex T3, w, ~ kRug\/ex 4, (17)

In this region, the flow has the two-layer structure. Assuming the potential flow
in the outer inviscid region, the solution here is presented by the improper integral

S
]
-

Figure 4.
The general flow scheme and the coordinate system for a cone.
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from the displacement thickness §(x, s). In the boundary layer, the flow is described
by full 3D equations:

R¢ 3 am 0 [ 8(x,t)dt
= — e:— e e 5 e 5 = — 1 y = — A —
s \/E,w zu\/EW(xs)W(xs) ks[1+7], r naxjsz—ﬂ
0
v=f+Kg+A +gxf h = hy + hu 1M( u?
- g g 3 x? - Pw r ) e\P1 (18)

2
Uy, = Wewus + vuy, + gxuux

2 2 2
wyy = Weww; +vwy, +w (gu + Wesw) —h (5 + Wes) + gxuwx

For these equations boundary conditions have the form (1). A solution of
these equations will be matched with the boundary layer solution ats — oo.
Initial conditions are needed at some streamwise location x = xq, which can be
obtained from a solution of Navier-Stokes equations near the body nose; this feature
does the problem more complicated. Obtained equations allow a self-similar
solution for hypersonic flows at some additional assumptions.

The solution in the outer boundary layer part, at y > 1, is described by formulas

t=y/\/dx,s), u=1+U(x,t,s), w=1—c(x,s)U

U= Cierfc(t/V2), py = % (%Mo + hy — 1)

(14 7)sd; — 2mxdy —2(n — 1 —r;)d = —2n
(14 7)sce — 2mxex — 2(m — 1 —r)c = —2m(p; — qp,)

(19)

Along characteristics &(x,s) = const, which are streamlines of the inviscid flow,
the equations for functions d = d(&,s) and ¢ = ¢(¢,s) are integrated. Ats — O these
functions are represented in the form

m\p, +Pols —1—
C:CSL_}_M, L(«f,S)zml—V;d:DsI++,
n;— -7 +7r n—1—r (20)
n_ —

Vs m—1 n—1
,C=0b," ", D=a,d" .

M) ="

Coefficients C and D are obtained by matching 4(¢,s) and ¢(&,s) ats — oo in
relation to a({) and b({) at { — 0 [17, 36]. The logarithmic singularity appears in
these functionsat] = 0 or L = 0. At L(&,0) <0 or I(£,0) < 0, the singularity is of
the power type.

Following from presented results, in contrast with the 2D separation, the
viscous-inviscid interaction does not eliminate the singularity in 3D boundary layer;
this effect moves only the critical value of k..

3.4 Singularities in the boundary layer near-wall region
The singularity in the outer BL part gives the critical value k. = 1/3, although

calculations show k, = k.(Mq, Pr, h,,). This indicates on the possibility of singularity
arising in the near-wall region. To study this possibility, at the first, we study the

10
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solution behavior of Eq. (6) at y < <1 in the runoff plane ¢ = ¢, where the solution
is presented in the form

B duo(O) 0 — dwo(O)
70 = dy > Vo — dy >
1
uo =10y + Uo(y), wo = gy + Wo(y), vo = —ay> — Fo + kGo, a = i(To — kby)
(21)
Second terms of these decompositions can be presented by series
it ayS
Up=Fop =Y 2 Fo=y -2,
° » z;)(i+4>! ° EEJ(Z‘FS)! 2
ﬂyi+2 ﬂyiJr?: ( )
Wo = Gg, = - , Go = L )
0T Eo(in)! 0 i§0(1+3)!
First three coefficients of these series are defined by relations
ag = —270a, a1 = k1o, ar = ktop
(23)

1
ﬂO = _phw’ ﬂl = _PTOhr; ﬂz = §(T0 — 3k90)90 + ZpMe‘L%

Using these decompositions we can study qualitatively a dependence of the flow
structure near the runoff plane from parameters by analyzing the subcharacteristic
behavior. The transformed normal to the body surface v and transverse w velocities
at { < <landy < <1in the first-order approximation are represented in the form

1 1
V=00 = — (0‘)’2 - gkﬁoy3) = —gkﬂoyz()’ +.)

__ba _ 6a
Vo= T kpy  kph,’

(24)
= —Wo = —k@oCy

In the plane ¢ = 0, the cross-flow velocity w = 0 due to symmetry conditions.
Here two critical points, in which v = 0, can be. The first point locates on the cone
surface y = 0, and the second one y = —y, appears in the physical space at a <0, if
p >0 (k<2/3), that corresponds to small angles of attack for the round cone and at
a> 0, if p <0. Commonly, the critical value of the cross-flow velocity gradient
k. <1/3 corresponds to the negative cross-flow pressure gradient p > 0, the trans-
verse skin friction in this region 6y > 0.

Using these expressions, the equation for the subcharacteristics is obtained in
the form

.y d¢ a VYo ¢
— N — P> =7 O : - s S = |7
v +y.) Ve P =hay 70 Ve +9o(1—5P) Co (25)
a=0:y= o _ph_w

20 4=
1-y,dlns 669

Here y, and 2o define the initial point in the cross-plane.

The subcharacteristic behavior is shown in Figure 5a and b for p > 0. Ata>0
velocities v < 0 and w < 0; the only critical point node is in the coordinate origin,
and subcharacteristics go to it from the region { # 0 (Figure 5a). Ata =0y, =0
and the point { =y = 0 is double critical point of the type saddle node: the saddle is
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y £ ‘J’<O

v>0

(a) (b)

Figure 5.
Subcharacteristics in the cross-plane at a >0 (a) and a <0 (b); p > 0.

in the lower half-plane, i.e., out of the physical space. The node is in the upper half-
plane, and the subcharacteristic pattern retains the same as at > 0. At @ <0 the
node drifts in the point { = 0,y =y, > 0, and the coordinate origin becomes by the
saddle point (Figure 5b). In this case, at y >y_ the normal velocity » < 0 and at
0<y<y.v>0;v=0ontheliney=y..

This analysis shows that at the parameter a sign change, the physical flow
structure varies qualitatively, and the value a = 0 is a criterion of the new flow
property appearance. It should be noted that in solutions of Navier-Stokes equations
for similar problems near the coordinate origin 2 = y = 0 in the leeward symmetry
plane, the streamwise-oriented vortex arises, and the flow is not described by the
BL theory since the viscous diffusion inside the vortex is distributed along the
radius from its axis, but not along the normal to the body surface. On the base of
this qualitative analysis, it is supposed that the critical value k.(h,,, M) is defined by
the relation

2a(k.) = 7o(k:) — keBo(ke) = 0 (26)

To support this hypothesis, equations for functions Uy (y) and Wy (y) are ana-
lyzed by substituting near-wall decompositions to Eq. (6). Considering functions
Uo(y) and Wy (y) as perturbations, we can linearize resulting equations and obtain
in the first-order approximation:

ony + ayzUOy + 7o (FO — kGo) = —aroyz,

2
WOyy -+ ayZWoy - g (T() — 390)}/W0 + 90<F0 - kGO) — (27)

Po+ Py + %ﬂzyz + g%y = p(hy = 2M,70y) | Uo
Aty — 0 Ug(y) and Wy(y) are expressed by above series, and in order to
match them with the solution of full Eq. (6) in the main BL part, it is required
that these functions will grow at y — oo not faster than a power function. To

study their solution behavior at y — oo and a # 0, we introduce the new
variable:

Wl

E=—ay’/3, y = —(3¢/a)’. (28)

At the limit £ — oo, previous equations are reduced in the first-order approxi-
mation to the form
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2 3 _
e R e 1 G a

2 o
(235 3 '3 3 \a 9a 1 (29)
Wy 2 oWy P1 . Py (36\ 2
s S o N X M,
¢ 0E? (3 5) o +cWo 3a * 6a \ a 9a (B0 + 3M.70)Uo
Solutions of these equations can be represented as
y 3 1
Uog = Aooje_%mgds + 70 (—§> A
a
0
2 /. 1 4 31 (30)
Wo = Boo®| —¢,3 Byi&P®| - —c, = —
0 00 < 67375) + 015 (3 6737‘5) 2(1_0 — 3]@90)
38,  (3E\° 6o+ 3M.zo
70 — 9[600 a 70 — 3k90

First terms of these expressions are solutions of homogeneous equations,
with zero right-hand sides; Ago, Boo, and By are constants; ®(a,b,x) is
Kummer’s degenerate hypergeometric function, which has asymptotes at
& — o0

a>0,6<0: @~ (—£)5 a<0,E>0: @~ el (31)

Solutions grow exponentially at « < 0 and p > 0; they cannot be matched with
the solution in the main BL part. Therefore, at these conditions a solution of BL
equations cannot exist. This conclusion and also the criterion (26) for the boundary
of the existing leeward symmetry plane solution are confirmed by numerical calcu-
lations for the slender round cone at an angle of attack [25-32, 37], a part of which is
presented in Figure 6. In this figure, symbols correspond to calculations of limit

D4
D3+

D2}
DA} k.=1/3

. ) Oa

0D et

DA

A J

kC
_02 A i L 1 A
DD DA D2 D3 DA 05

Figure 6.
The boundary of the solution existing in the leeward symmetry plane of the slender round cone at the angle of
attack and Pr = 1 in the dependence of the critical value k.: A, [28]; m, [29]; and o, [37].
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values a(k,) for the solution existing at different boundary conditions in the diapa-
son of Mach numbers from 2 to oo at the Prandtl number 1 for different surface
temperatures. At k <1/3 data are grouped near the value @ = 0 in accordance with
the criterion (26). The data scatter is, apparently, due to the decrease of the calcu-
lation accuracy at the approach to the critical value &, and also with errors of data
copying from papers. At k >1/3, all calculations are finished with @ > 0, since the
solution existing in this region is determined by singularities in the outer BL part,
but not in the near-wall region.

Then we consider the solution behavior of full BL equations in the near-wall
region beside the runoff plane at { < <1. 3D BL equations have the parabolic type,
and their solution before the runoff plane knows nothing about the solution in this
plane; however, in order for the first solution to move smoothly into the last one at
a> 0, the first will be locally self-similar. Due to this condition, the streamwise 7({)
and cross-flow 6({) friction stresses and the self-similar variable 5 at { < <1 will be
defined by expressions

0 gy = P D
%) e " G2

The function a(z) at a >0 will satisfy to the condition a(0) = 1. In this case,
flow functions in the boundary layer near the wall can be represented in the
form

2

£ = (@) [ra 5+ F1.0) | wl0.&) =, = an + Ul0.)

2

801.6) = a(&)|00'S + G001 w0r.0) =g, = Oon-+ W) (33)

v=a Ka _ 190164’%)172 YF— kG(l +k§“—4) — k(Gy — kgngw}
2 a a

Substituting these expressions to Eq. (6) and linearizing the result with respect
to disturbances, we obtain the first-order approximation for the flow in the near-
wall region beside the runoff plane:

Un + an?U + a2 {k602nU; + 0 [F — kG(1+ %) ~ ki Gy } = —aror?

Wy + an* W, + az{k90§nW¢ + 6o {F — kG <1 + %) r kCGg} — 3ac:7W} +
2

1
—abon* + a* {ﬁo + pan + iﬁaﬂz + {g (90 + 3PMeTO)’7 _Phrl U}

(34)

Here f3; = %1090 — kH(z) + pMer%. Due to local self-similarity at @ > 0, we define
the function a(¢{) as

1 4a
aa2 — §k90§da§ =a, dz =1+ ch, q = 1?00 (35)
The constant C is found from a comparison with numerical calculations. It
follows from this relation at a > 0 and ¢ < 2 the solution of Eq. (6) in the near-wall

region at { < <1 can find in the form of the series:
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F(n,8) =Fo(n) + {1F;(n) + ... Un,$) =Uo(n) +¢1U4(10) + ..

6
Gn.0) = Gol) + LIG () + o W(LO) = Woln) +CIW, () + o OO

The first term of this expansion is the solution for the runoff plane but depends
on the self-similar variable. Second terms define the proper solution of BL Eq. (6) at
{ < <1, which at # — o0, has the form [37]

3

4 5 4
52_%: Uq(é) Aqu)< 75) +Aq1§_q)(§7§7 )

3
4 2 1 4 9 3 3 3
Wq(g):quq)(g 737§> +Bq1§/3q)< T agag) i ﬂl ﬂz (f)
To — kb
0o + 3M. 7o 0o + 3M,79 U
279 0 To —3kOy 1
(37)

Here A0, Ag1, Bjo, and By are constants. These relations show that the proper
solution in near-wall BL region near the runoff plane is nonzero. It is irregular at
a >0 and it is singular at @ < 0. The logarithmic singularity is not in this case, and
the solution of BL equations exists at the critical value k. in contrast to the outer
region.

In the work of [15], at the analysis of perturbations in the boundary layer related
with the angle of attack, it was found that they lead to infinite disturbances in the
symmetry plane, although equations have no visible singularities contained. In this
case, the first-order approximation is described by the Blasius solution for the delta
flat plate. In Figure 7, dimensionless longitudinal and transverse skin friction dis-
tributions f, (z) and g; (z), induced by the second order BL approximation
(Figure 7a) and the angle of attack (Figure 7b) are presented in dependence on
transverse coordinate z = 1 — Z /X, where X and Z are Cartesian streamwise and
transverse coordinates. By approaching the symmetry plane (z = 1), skin friction
perturbations infinitely grow. Detailed investigation of equations for these func-
tions showed that in these cases singularities take place as in the near-wall and outer
BL parts. In the outer part, the singularity corresponds to values of the parameter

ohx -]

" S~

(a) (b)

Figure 7.
Skin friction distributions on the small aspect ratio delta wing at M = 2 related with (a) second BL
approximation and (b) angle of attack.
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m = 3/4 and 7/8 in relation to cases a and b, respectively. The longitudinal velocity
perturbation singularity is related only with the near-wall singularity.

Near-wall singularities generate the flow structure including three asymptotic
sublayers describing the viscous-inviscid interaction similar as near the 2D separa-
tion point. However, the viscous-inviscid interaction is not enough to remove the
singularity of the obtained type. Near the wall sublayer close to the symmetry plane
the fourth region is formed, in which the flow is described by the parabolized
Navier-Stocks equations similar to the above case of the outer singularity.

4. Studies of the symmetric flow instability over thin bodies and the
control possibility on the base of the interaction model of 3D boundary
layer with the electrical discharge

The electric discharge is considered as one of effective methods for control of the
flow asymmetry over bodies [23-27]. However, to select optimal control parame-
ters, it needs to have a reasonable criterion for the asymmetry origin and a possi-
bility for fast estimation of the control effect. For the second problem, the model of
the boundary layer and discharge interaction is proposed. The scheme of this model
is shown in Figure 8 [28-31, 37].

It is assumed the plasma discharge effect can be modeled by the heat source in
the boundary layer. The effect of gas ionization is neglected since the ionization
coefficient is of the order of 10 . This source in the energy equation is presented by
formulas:

QI

b —7.(¢)’
Q Neolhoo c ]

= Quy’exp [—7 s 9 =2V @0 — @1)(ps— )| (38)

Here Q" is a dimensional source intensity; Q is a maximum of dimensionless
heat-release intensity; o characterizes the discharge width; y_(¢) is a centerline of
the discharge that is approximated by the parabola; y, is a maximum distance from
the discharge centerline to the wall; and the angles ¢, and ¢, determine the elec-
trode locations.

Calculations of the turbulent boundary layer characteristics were conducted
using the method [10] for a slender cone of half-apex angle §. = 5° at the angle of
attack @ = a* /8, = 3.15. Other parameters are:/ = 1 m, T, = 288K, #,, = 10 m/s,
o =1, and y, = 1; the center between electrodes is located at ¢y = 0.5(¢; + ¢,) =
1.714 rad (98.25), ¢ = ¢y — 3A¢, and ¢, = ¢ + 3A¢, where Agp = 0.0314159 is
the integration step of the finite-difference approximation.

In Figure 9, the dimensionless enthalpy (Figure 9a) and circumferential veloc-
ity (Figure 9b) profiles across the boundary layer are shown as functions of # for
Qo = 200 and for different polar angles ¢. These profiles are similar to the source

4+ incoming B.L. cold gas
Y .
S !dlscharge front
dI hot gas
electrodes ?

Figure 8.
A scheme of discharge interaction with the boundary layer.
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Figure 9.
Profiles of temperature (a) u and civcumferential velocity (b) across the boundary layer near the heat-release
region.

heat intensity distribution across the boundary layer. The temperature reaches the
maximum value near the rear electrode, ¢ = ¢, = 1.809. Behind the heat source
region, the temperature maximum decreases and moves toward the upper bound-
ary-layer edge due to the heat diffusion. The station ¢ = 1.87 is located just after the
separation point

Figure 10a demonstrates the plasma discharge effect on the separation point. As
the heat source intensity increases from 0 to 400, the separation angle, ¢,, decreases
from 133° to about 105°. It is seen that the plasma heating is more effective in the
range Q, <100, where the slope dg, /dQ , is relatively large.

Figure 10b illustrates feasibility of the vortex structure control using a local
boundary-layer heating on the base of the developed criterion of symmetric flow
stability (solid line). Due to the heat release, the flow configuration changes from
the initial asymmetric state (¢, ~133°, symbol 1) to the symmetric state with
0; ~120° (symbol 2). This requires a nondimensional heat source intensity Q, = 30
that corresponds to the total power which is approximately equal to 480 W. This
example indicates that the method is feasible for practical applications of the global
flow structure control.

The method of the global flow stability was developed [27-31] using the asymp-
totic approach for the flow over slender cones, the separated inviscid flow model
[34] and the stability theory of autonomous dynamical systems [35]. Comparison of
the calculated criteria for different elliptic slender cones with experimental data for
laminar and turbulent boundary layers sowed its efficiency.

135 40
Py deg o
351 asymmetric
flow
3.0F )
symmetric
flow
25
P
- . = " 210 A A L A i
100 200 300 400 30 40 50 60 70

(a) (b)

Figure 10.
Discharge effect on the separation angle (a) and flow state (b).
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5. Investigations of abnormal features of the heat transfer and the
laminar-turbulent transition for hypersonic flows around flat delta
wing with blunted leading edges

Although found in the experimental zones of abnormal high heat fluxes on the
windward flat surface of the half cone with blunted nose and delta wings with
blunted leading edges, the phenomenon of the early laminar-turbulent transition
[38-46] cannot be explained in frameworks of the boundary layer theory and on the
base of solutions of parabolized Navier-Stocks equations. Only detailed flow simu-
lations using full Navier-Stocks equations allowed to find reasons of such anomalies
[46-48].

Figure 8 shows the comparison of calculated (the upper part) and experimental
(the lower part) heat flux distributions on the delta wing with the leading edge
sweep angle y = 75°, the bluntness radius of cylindrical edges and the spherical
nose R = 8 at the angles of attack « = 0°, M = 6, unit Reynolds numbers
Re; = 1.1556 x 10° m ™! [47, 48]. Similar patterns were obtained in numerical
simulations for different Reynolds numbers and Mach numbers up to 10.5 [46].

At moderate Mach numbers, a flow on such simple surface outside the nose and
leading edge regions is described very well by the flat plate approximation and has
no anomalies.

At hypersonic speeds, high heat flux regions, which is present in Figure 11, are
observed in the middle wing span and near the symmetry plane. It is seen that the
experimental middle high heat flux streak is finished by the turbulent wedge.
Calculations were conducted only for the laminar flow.

To understand the reason for the heat flux anomaly, the cross-flow pattern helps
(Figure 9). Three longitudinal vortexes are in this flow. The largest vortex is in the
inviscid region above shock (the dark layer) and boundary (the light layer) layers.
Vortex near the symmetry plane and in the middle of the span occupies both layers.
Its mutual location depends on the blunt radius, Mach, and Reynolds numbers [43,
46]. For the considered case, the middle vortex is above the high heat flux region
that is shown below the cross-flow pattern (Figure 12).

The analysis shows that high heat flux streaks are formed by the convective
transfer of heat gas from the shock layer to the wing surface by the gas rotation
inside the vortex. In the considered case, the middle vortex is formed before the
symmetry plane vortex near the nose in the narrowing flow region between the
head shock and the leading edge due to the cross-flow acceleration near the leading
edge and the induced pressure gradient related with the domed flow structure near
the symmetry plane.

e 2 SR
heat flux, Wt'm minimums

' 9000
the main maximum
6750

4500

2250 the symmetry

plane the Centra\

o maximum

Figure 11.
Comparison of numerical (the upper part) and experimental (the lower part) specific heat flux distribution on
the wing surface.
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the viscous boundary layer 3

_the main vortex

Figure 12.
The cross-flow structure above the wing in the section X = 0.1 m.

In considered conditions, the middle vortex also is the reason for the laminar-
turbulent transition. Formed along the vortex center, streamwise velocity profiles
have inflection points that lead to the Rayleigh instability development. Transverse
velocity profiles along this line have the S-shaped form that leads to the cross-flow
instability. Both these processes result to the more early transition than Tollmien-
Schlichting wave evolution.

6. Conclusions

In this work, the short review of researches on the study of BL equation singu-
larities, which are formed when two streamline families are collided, is presented.
This phenomenon can arise only in unsteady and 3D problems and has no analogue
in 2D flows. A typical example of such problem is the flow around a slender cone in
the vicinity of the runoff plane. In this case, solutions are found in the analytical
form that allows to analyze explicitly the singularity character.

The analysis of solutions for the outer flow part revealed two singularity types.
One type is in streamwise and cross-velocity viscous perturbations; it arises at
values of relative cross pressure gradient £ >1 and leads to the exponential distur-
bance growth as the runoff plane is approached. At £ = 1 the singularity is loga-
rithmic and at & > 1 it is power; its appearance is correlated with the BL separation
appearance. Another singularity type at smaller values of £ >1/3 in the first-order
approximation leads to the infinite growth of transverse velocity perturbations only
and is not related directly with the flow separation; at £ = 1/3 the singularity is
logarithmic, and at k > 1/3 it is power. These BL singularities correspond to some
asymptotic flow structure at Re>>1. This structure includes the boundary region
with the dimension of the order of the BL thickness, in which the viscous transverse
diffusion effect smoothes the singularity. The comparison of obtained parabolized
Navier-Stokes equation solutions describing the flow in the boundary region with
BL equations solutions confirms this conclusion. Second region induced by the
viscous-inviscid interaction effect has the transverse dimension of the order of
square root from the BL thickness and the two-layer structure. For the potential
flow in the outer inviscid subregion, the integral solution representation is found on
the base of the slender wing theory. The inner subregion is described by full 3D BL
equations, the solution of which is obtained for the outer viscous subregion part. It
was shown that the viscous-inviscid interaction does not eliminate the singularity
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but drifts it in the parametric space. To eliminate the irregularity, the boundary
region is needed.

To find the dependence of the critical parameter of the singularity appearance k,
on Mach and Prandtl numbers and the wall temperature BL equations, solutions are
studied in the near-wall region beside the runoff plane. Equation subcharacteristic
(streamlines) analysis showed the presence of one parameter a, the sing of which
defines the qualitative change of the streamline topology and, consequently, the
physical flow structure. It is shown and confirmed by comparison with all available
calculations that the boundary of the solution which exists in the runoff plane
corresponds to the criterion a(k.) = 0. The analysis of BL equation solutions near
the runoff plane revealed the presence at @ > 0 of irregular and at a < 0 singular
proper solutions. This is confirmed by numerical calculations of the flow around
slender delta wing with the small aspect ratio. Singularities in the near-wall region
generate the some flow structure in its vicinity, the study of which is out of this
paper framework. Presented results do not depend on outer boundary conditions
and are true for the full freestream velocity diapason including hypersonic flows.

Presented research allows concluding that the flow in symmetry planes, for
example, on wings, has the complex structure, which is needed to take into account
the numerical modeling in order to eliminate the accuracy loss. Regular flow func-
tion decompositions commonly used at solutions of BL equations are not applied
near this plane, and it cannot be considered as a boundary condition plane due to a
possible solution disappearance.
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