16 research outputs found

    Antimicrobial Modifications of Polymers

    Get PDF

    Immobilization of Caraway Essential Oil in a Polypropylene Matrix for Antimicrobial Modification of a Polymeric Surface

    No full text
    This study investigates antibacterial polymer composites based on polypropylene as modified by caraway essential oil at various concentrations, the latter immobilized on a talc. The caraway essential oil is incorporated in the polypropylene by a thermoplastic processing method. Analysis of the morphology of the composites was carried out by scanning electron microscopy. The chemical composition of the caraway essential oil in addition to its efficiency of incorporation and release were evaluated by GC/MS and Pyrolysis-GC/MS techniques, respectively. Determination was made as to the influence of such incorporation on thermal and tensile properties of the samples, while antibacterial activity was evaluated through conducting disk diffusion tests and measurement with adherence to the ISO 22196:2011 standard. It was found that incorporating the caraway essential oil in the samples did not affect the homogeneity of the thermoplastic-processed composites at any studied concentration. Stress–strain analysis confirmed the plasticizing effect of the essential oil in the polypropylene matrix, in addition to which, differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) analysis revealed that the prepared compositions with essential oil exhibited similar thermal properties to neat polypropylene. Results indicated significant antibacterial activity against Staphylococcus aureus and Escherichia coli at the concentration of essential oil of 4.9 ± 0.2 wt% and higher

    Influence of Polylactide Modification with Blowing Agents on Selected Mechanical Properties

    No full text
    Article presents research of modification of PLA with four types of chemical blowing agents with a different decomposition characteristic. The modification was done both cellular extrusion and injection molding processes. Obtained results shows that dosing blowing agents have the influence on mechanical properties and structure morphology of PLA. The differences in obtained results are also visible and significant between cellular processes

    Antibacterial Films Based on PVA and PVA–Chitosan Modified with Poly(Hexamethylene Guanidine)

    No full text
    In this study, thin, polymeric films consisting of poly(vinyl alcohol) (PVA) and chitosan (Ch) with the addition of poly(hexamethylene guanidine) (PHMG) were successfully prepared. The obtained materials were analyzed to determine their physicochemical and biocidal properties. In order to confirm the structure of PHMG, nuclear magnetic resonance spectroscopy (1H NMR) was applied, while in the case of the obtained films, attenuated total reflectance infrared spectroscopy with Fourier transform (FTIR-ATR) was used. The surface morphology of the polymer films was evaluated based on atomic force microscopy. Furthermore, the mechanical properties, color changes, and thermal stability of the obtained materials were determined. Microbiological tests were performed to evaluate the biocidal properties of the new materials with and without the addition of PHMG. These analyses confirmed the biocidal potential of films modified by PHMG and allowed for comparisons of their physicochemical properties with the properties of native films. In summary, films consisting of PVA and PHMG displayed higher antimicrobial potentials against Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) bacteria in comparison to PVA:Ch-based films with the addition of PHMG

    Isolation and Thermal Stabilization of Bacteriocin Nisin Derived from Whey for Antimicrobial Modifications of Polymers

    No full text
    This work describes novel alternative for extraction of bacteriocin nisin from a whey fermentation media and its stabilization by using polyethylene glycol as matrix with high practical applicability. This product was compared with commercially available nisin product stabilized by sodium chloride and nisin extracted and stabilized by using ammonium sulfate and polysorbate 80. The stability of samples was tested by means of long-term storage at −18, 4, 25, and 55°C up to 165 days. The nisin content in the samples was determined by high-performance liquid chromatography and electrophoresis. In addition, effect of whey fortification with lactose on nisin production and antibacterial activity studied against Staphylococcus aureus was tested. Results show that stabilization by polyethylene glycol provides enhanced nisin activity at 55°C after 14 days and long-term stability at 25°C with keeping antibacterial activity

    Low molecular weight poly(lactic acid) microparticles for controlled release of the herbicide metazachlor: Preparation, morphology, and release kinetics

    No full text
    The preemergence chloroacetamide herbicide metazachlor was encapsulated in biodegradable low molecular weight poly(lactic acid) micro- and submicroparticles, and its release to the water environment was investigated. Three series of particles, S, M, and L, varying in their size (from 0.6 to 8 μm) and with various initial amounts of the active agent (5%, 10%, 20%, 30% w/w) were prepared by the oil-in-water solvent evaporation technique with gelatin as biodegradable surfactant. The encapsulation efficiencies reached were about 60% and appeared to be lower for smaller particles. Generally, it was found that the rate of herbicide release decreased with increasing size of particles. After 30 days the portions of the herbicide released for its highest loading (30% w/w) were 92%, 56%, and 34% for about 0.6, 0.8, and 8 μm particles, respectively. The release rates were also lower for lower herbicide loadings. Metazachlor release from larger particles tended to be a diffusion-controlled process, while for smaller particles the kinetics was strongly influenced by an initial burst release. © 2012 American Chemical Society
    corecore