8 research outputs found

    Development and Applications of the Holographic Subsurface RASCAN Radar

    Get PDF

    Design and Applications of Multi-Frequency Holographic Subsurface Radar: Review and Case Histories

    Get PDF
    Holographic subsurface radar (HSR) is not currently in widespread usage. This is due to a historical perspective in the ground-penetrating radar (GPR) community that the high attenuation of electromagnetic waves in most media of interest and the inability to apply time-varying gain to the continuous-wave (CW) HSR signal preclude sufficient effective penetration depth. While it is true that the fundamental physics of HSR, with its use of a CW signal, does not allow amplification of later (i.e., deeper) arrivals in lossy media (as is possible with impulse subsurface radar (ISR)), HSR has distinct advantages. The most important of these is the ability to do shallow subsurface imaging with a resolution that is not possible with ISR. In addition, the design of an HSR system is simpler than for ISR due to the relatively low-tech transmitting and receiving antennae. This paper provides a review of the main principles of HSR through an optical analogy and describes possible algorithms for radar hologram reconstruction. We also present a review of the history of development of systems and applications of the RASCAN type, which is possibly the only commercially available holographic subsurface radar. Among the subsurface imaging and remote sensing applications considered are humanitarian demining, construction inspection, nondestructive testing of dielectric aerospace materials, surveys of historic architecture and artworks, paleontology, and security screening. Each application is illustrated with relevant data acquired in laboratory and/or field experiments

    Discussion of the Non-Destructive Testing Possibilities for the Study of the Great Pyramid of Giza

    No full text
    Many constructions built by ancient civilization hold many mysteries and attract the attention of historians, archaeologists and tourists from all over the world. The most famous and enigmatical among them is the Great (Khufu’s-Cheops’) Pyramid on the Giza plateau in Egypt. The assignment, construction methods and especially the inside structure of the Pyramid have been the cause of heated debate among historians and researchers since ancient times. Unfortunately, not only researchers are interested in ancient structures and excavation sites of archaeological values, but also robbers and illegal seekers of archaeological values. This led to the partial destruction of the Pyramid by the order of the Arab caliph Al-Ma’mun in the 9th century AD. From the middle of the last century, the point of view has prevailed that only non-destructive testing methods are acceptable when examining ancient structures. In the 1960s, a technology was proposed for transilluminating the pyramids of Giza by muons, which are generated by cosmic rays in the Earth’s atmosphere. This method gave promising results. Other means were also proposed, which include radar, as well as gravitational and vibration technologies. However, despite numerous attempts to use them, no significant success or discovery has been achieved. A discussion of these methods, their applications and partial successes is the subject of this article

    On the Use of Microwave Holography to Detect Surface Defects of Rails and Measure the Rail Profile

    No full text
    The use of microwave holography for detecting rail surface defects is considered in this paper. A brief review of available sources on radar methods for detecting defects on metal surfaces and rails is given. An experimental setup consisting of a two-coordinate electromechanical scanner and a radar with stepped frequency signal in the range from 22.2 to 26.2 GHz is described, with the help of which experimental data were obtained. Fragments of R24 rails with surface defects in their heads were used as the object of study. The radar images of rail defects were obtained by the described method based on back propagation of a wavefront. It is shown that polarization properties of electromagnetic waves can be used to increase the contrast of small-scale surface defects. A method of estimating rail surface profile by radar measurements is given and applied to the experimental data. Comparison of the longitudinal rail head profiles obtained by radar and by direct contact measurements showed that the radar method gives comparable accuracy

    An Example of Microwave Holography Investigation of an Old Orthodox Russian Icon Dated to 19th Century

    No full text
    The study, preservation and restoration of the cultural heritage objects of mankind are not only of great cultural importance but also have a significant economic component because cultural values of past centuries attract tourists from all over the world. The use of modern technical and scientific achievements in the field of non-destructive testing makes it possible to obtain new knowledge about cultural objects regarding their origin and dating, as well as to contribute to their better restoration and preservation. An important component of their use is additional opportunities to identify high quality fakes of original cultural objects that have historical significance. The capabilities of various non-destructive testing (NDT) methods used to examine cultural objects are characterized by their penetration depth, resolution, and sensitivity to material properties. Thus, in many cases, it is necessary to perform multi-sensor non-destructive testing and creating large data sets that require an efficient evaluation. This article considers an example of using microwave (MW) holographic sensors for the examining of an old Orthodox Russian Icon dated of the late 19th century. The paper describes the technology of microwave holography, which has recently been applied to the examination of art works. Unlike the well-studied X-ray method, MW holography makes it possible to examine objects with one-sided access. Its other advantages are the relative cheapness of the equipment and the safety of use due to the low level of radiation. The article describes a MW holograms reconstruction algorithm, as well as a method for improving the quality of obtained MW images. The data collected at MW research of the Icon are compared with the results of X-ray examination and confirmed by subsequent opening and visual examination performed by professional restorers
    corecore