44 research outputs found

    On the number of n-ary quasigroups of finite order

    Get PDF
    Let Q(n,k)Q(n,k) be the number of nn-ary quasigroups of order kk. We derive a recurrent formula for Q(n,4). We prove that for all n2n\geq 2 and k5k\geq 5 the following inequalities hold: (k3/2)n/2(k12)n/2<log2Q(n,k)ck(k2)n({k-3}/2)^{n/2}(\frac{k-1}2)^{n/2} < log_2 Q(n,k) \leq {c_k(k-2)^{n}} , where ckc_k does not depend on nn. So, the upper asymptotic bound for Q(n,k)Q(n,k) is improved for any k5k\geq 5 and the lower bound is improved for odd k7k\geq 7. Keywords: n-ary quasigroup, latin cube, loop, asymptotic estimate, component, latin trade.Comment: english 9pp, russian 9pp. v.2: corrected: initial data for recursion; added: Appendix with progra

    Propelinear 1-perfect codes from quadratic functions

    Full text link
    Perfect codes obtained by the Vasil'ev--Sch\"onheim construction from a linear base code and quadratic switching functions are transitive and, moreover, propelinear. This gives at least exp(cN2)\exp(cN^2) propelinear 11-perfect codes of length NN over an arbitrary finite field, while an upper bound on the number of transitive codes is exp(C(NlnN)2)\exp(C(N\ln N)^2). Keywords: perfect code, propelinear code, transitive code, automorphism group, Boolean function.Comment: 4 IEEE pages. v2: minor revision, + upper bound (Sect. III.B), +remarks (Sect. V.A); v3: minor revision, + length 15 (Sect. V.B

    n-Ary quasigroups of order 4

    Full text link
    We characterize the set of all N-ary quasigroups of order 4: every N-ary quasigroup of order 4 is permutably reducible or semilinear. Permutable reducibility means that an N-ary quasigroup can be represented as a composition of K-ary and (N-K+1)-ary quasigroups for some K from 2 to N-1, where the order of arguments in the representation can differ from the original order. The set of semilinear N-ary quasigroups has a characterization in terms of Boolean functions. Keywords: Latin hypercube, n-ary quasigroup, reducibilityComment: 10pp. V2: revise

    On reconstructing reducible n-ary quasigroups and switching subquasigroups

    Full text link
    (1) We prove that, provided n>=4, a permutably reducible n-ary quasigroup is uniquely specified by its values on the n-ples containing zero. (2) We observe that for each n,k>=2 and r<=[k/2] there exists a reducible n-ary quasigroup of order k with an n-ary subquasigroup of order r. As corollaries, we have the following: (3) For each k>=4 and n>=3 we can construct a permutably irreducible n-ary quasigroup of order k. (4) The number of n-ary quasigroups of order k>3 has double-exponential growth as n tends to infinity; it is greater than exp exp(n ln[k/3]) if k>=6, and exp exp(n (ln 3)/3 - 0.44) if k=5.Comment: 12pp. V.4: improved lower bound (last section), orders 5 and

    An upper bound on the number of frequency hypercubes

    Full text link
    A frequency nn-cube Fn(q;l0,...,lm1)F^n(q;l_0,...,l_{m-1}) is an nn-dimensional qq-by-...-by-qq array, where q=l0+...+lm1q = l_0+...+l_{m-1}, filled by numbers 0,...,m10,...,m-1 with the property that each line contains exactly lil_i cells with symbol ii, i=0,...,m1i = 0,...,m-1 (a line consists of qq cells of the array differing in one coordinate). The trivial upper bound on the number of frequency nn-cubes is m(q1)nm^{(q-1)^{n}}. We improve that lower bound for n>2n>2, replacing q1q-1 by a smaller value, by constructing a testing set of size sns^{n}, s<q1s<q-1, for frequency nn-cubes (a testing sets is a collection of cells of an array the values in which uniquely determine the array with given parameters). We also construct new testing sets for generalized frequency nn-cubes, which are essentially correlation-immune functions in nn qq-valued arguments; the cardinalities of new testing sets are smaller than for testing sets known before. Keywords: frequency hypercube, correlation-immune function, latin hypercube, testing set

    On the cardinality spectrum and the number of latin bitrades of order 3

    Full text link
    By a (latin) unitrade, we call a set of vertices of the Hamming graph that is intersects with every maximal clique in 00 or 22 vertices. A bitrade is a bipartite unitrade, that is, a unitrade splittable into two independent sets. We study the cardinality spectrum of the bitrades in the Hamming graph H(n,k)H(n,k) with k=3k=3 (ternary hypercube) and the growth of the number of such bitrades as nn grows. In particular, we determine all possible (up to 2.52n2.5\cdot 2^n) and large (from 143n314\cdot 3^{n-3}) cardinatities of bitrades and prove that the cardinality of a bitrade is compartible to 00 or 2n2^n modulo 33 (this result has a treatment in terms of a ternary code of Reed--Muller type). A part of the results is valid for any kk. We prove that the number of nonequivalent bitrades is not less than 2(2/3o(1))n2^{(2/3-o(1))n} and is not greater than 2αn2^{\alpha^n}, α<2\alpha<2, as nn\to\infty.Comment: 18 pp. In Russia

    Etude de la formation d'image par auto-focalisation pour le développement d'un dispositif visuel non conventionnel de la réalité augmentée

    No full text
    Augmented Reality (AR) devices such as Near Eye Displays (NEDs) require both aesthetic design and high performance. Conventional NEDs are strongly limited by optical design constraints related to the basic principles of geometric optics. Our unconventional concept based on the self-focusing effect tries to overcome these constraints. The main idea of the self-focusing prototype is to emit directly the light field at the surface of the glass in a way the eye can form an image on the retina. It let us design a smart glasses prototype without an optical system between the viewer’s eye and the display. This ambition demands the association of technologies in integrated photonics, holography, and the implementation of diffractive effects. My research is focused on the theoretical description and experimental validation of the self-focusing effect for the NED-prototype image formation conceived in CEA-LETI. It is particularly oriented toward the understanding, simulation, and experimental evaluation of the relation between Emissive Points Distribution (EPD) and self-focused pattern (spel). Various types of EPD were studied and a feasible EPD was proposed. I proposed a metric to evaluate the quality of spel-formation and simulated self-focusing projection of our concept. The self-focusing performance of EPD was validated experimentally with a setup imitating our unconventional NED. In the second part of the work, I investigated the image formation capability of the self-focusing effect. Firstly, it was done with simulations based on a simplified spel-formation approach and then validated experimentally with a self-focusing image formation setup.Les dispositifs de Réalité Augmentée (RA) comme les écrans proches de l’œil (Near Eye Display ou NED) nécessitent à la fois une conception esthétique et des performances élevées. Les NED conventionnels sont très limités par les contraintes de conception liées aux principes de l’optique. Notre concept non conventionnel, basé sur l'effet d'autofocalisation, tente de surmonter ces contraintes. L'idée est d'émettre directement le champ lumineux à la surface du verre de manière à ce que l'œil puisse former une image sur la rétine. Cela permet de concevoir des lunettes sans système optique entre l'œil et l'écran. Cette ambition nécessite d'associer les technologies de la photonique intégrée, de l'holographie, et de la mise en œuvre d'effets diffractifs. Ma thèse porte sur la description théorique et la validation expérimentale de l'effet d'autofocalisation dans le prototype NED conçu au CEA-LETI. Elle est orientée vers la compréhension, la simulation et l'évaluation expérimentale de la relation entre la distribution des points émissifs (EPD) et le motif autofocus (spel). Différents types d'EPD ont été étudiés et une EPD réalisable a été identifiée. J'ai proposé une métrique pour évaluer la qualité de la formation du spel et simulé une projection autofocalisée. Les performances de cette l'EPD ont été validées expérimentalement avec une configuration imitant notre NED non conventionnel. Dans la deuxième partie de ce travail, j'ai étudié la capacité de formation d'images de l'effet d'autofocalisation, à l'aide de simulations basées sur une approche simplifiée de la formation de spels, puis d’une validation expérimentale avec une configuration de formation d'images autofocus

    Etude de la formation d'image par auto-focalisation pour le développement d'un dispositif visuel non conventionnel de la réalité augmentée

    No full text
    Augmented Reality (AR) devices such as Near Eye Displays (NEDs) require both aesthetic design and high performance. Conventional NEDs are strongly limited by optical design constraints related to the basic principles of geometric optics. Our unconventional concept based on the self-focusing effect tries to overcome these constraints. The main idea of the self-focusing prototype is to emit directly the light field at the surface of the glass in a way the eye can form an image on the retina. It let us design a smart glasses prototype without an optical system between the viewer’s eye and the display. This ambition demands the association of technologies in integrated photonics, holography, and the implementation of diffractive effects. My research is focused on the theoretical description and experimental validation of the self-focusing effect for the NED-prototype image formation conceived in CEA-LETI. It is particularly oriented toward the understanding, simulation, and experimental evaluation of the relation between Emissive Points Distribution (EPD) and self-focused pattern (spel). Various types of EPD were studied and a feasible EPD was proposed. I proposed a metric to evaluate the quality of spel-formation and simulated self-focusing projection of our concept. The self-focusing performance of EPD was validated experimentally with a setup imitating our unconventional NED. In the second part of the work, I investigated the image formation capability of the self-focusing effect. Firstly, it was done with simulations based on a simplified spel-formation approach and then validated experimentally with a self-focusing image formation setup.Les dispositifs de Réalité Augmentée (RA) comme les écrans proches de l’œil (Near Eye Display ou NED) nécessitent à la fois une conception esthétique et des performances élevées. Les NED conventionnels sont très limités par les contraintes de conception liées aux principes de l’optique. Notre concept non conventionnel, basé sur l'effet d'autofocalisation, tente de surmonter ces contraintes. L'idée est d'émettre directement le champ lumineux à la surface du verre de manière à ce que l'œil puisse former une image sur la rétine. Cela permet de concevoir des lunettes sans système optique entre l'œil et l'écran. Cette ambition nécessite d'associer les technologies de la photonique intégrée, de l'holographie, et de la mise en œuvre d'effets diffractifs. Ma thèse porte sur la description théorique et la validation expérimentale de l'effet d'autofocalisation dans le prototype NED conçu au CEA-LETI. Elle est orientée vers la compréhension, la simulation et l'évaluation expérimentale de la relation entre la distribution des points émissifs (EPD) et le motif autofocus (spel). Différents types d'EPD ont été étudiés et une EPD réalisable a été identifiée. J'ai proposé une métrique pour évaluer la qualité de la formation du spel et simulé une projection autofocalisée. Les performances de cette l'EPD ont été validées expérimentalement avec une configuration imitant notre NED non conventionnel. Dans la deuxième partie de ce travail, j'ai étudié la capacité de formation d'images de l'effet d'autofocalisation, à l'aide de simulations basées sur une approche simplifiée de la formation de spels, puis d’une validation expérimentale avec une configuration de formation d'images autofocus
    corecore