7 research outputs found

    SWIRLER

    Full text link
    FIELD: power engineering. SUBSTANCE: swirler comprises housing whose inner side is provided with guiding grooves from the side of entrance of fluid. The flanges mounted at the ends of the swirler have guiding grooves made of tabs that embrace the periphery of the inner side of the housing. The number of grooves is determined from the equation proposed. EFFECT: enhanced efficiency. 1 dwg.Изобретение относится к энергетике, в частности к области производства тепловой и электрической энергии на тепловых и атомных электростанциях, и может быть использовано в трубопроводах с двухфазными потоками. В завихрителе, содержащем корпус, на внутренней стенке которого со стороны входа потока текучей среды выполнены направляющие пазы, а на концах установлены фланцы, направляющие пазы выполнены в виде лепестков, охватывающих весь периметр внутренней поверхности корпуса, а количество пазов определяется соотношением D/2, где D - внутренний диаметр основного трубопровода; высота паза h составляет 0,3d, где d - толщина стенки основного трубопровода, при этом толщина стенки корпуса равна d+0,3d, a протяженность пазов на участке завихрения составляет 10-15D в зависимости от скорости и режима течения потока в трубопроводе. Устройство позволяет увеличить площадь и объем охвата текущей среды по всему внутреннему периметру перед поворотным участком, повысить эффект закручивания потока и снизить вибрацию трубопровода вследствие отсутствия градиента давлений на стенках трубопровода; исключить загрязнение направляющих пазов отложениями ржавчины вследствие изменения прямоугольного профиля паза на лепестковый. 1 ил

    Experimental Study on Performance Enhancement of a Photovoltaic Module Using a Combination of Phase Change Material and Aluminum Fins—Exergy, Energy and Economic (3E) Analysis

    No full text
    The electrical performance of a photovoltaic (PV) module is hugely affected by its temperature. This study proposed a passive cooling mechanism for the cooling of a PV panel. The proposed cooling system is made up of a combination of aluminum fins and paraffin wax integrated at the PV panel’s rear side. The average temperature for the cooled panel for the entire period of the experiment is 36.62 °C against 48.75 °C for the referenced PV module. This represents an average reduction of 12.13 °C for the cooled panel. The average power for the cooled panel is 12.19 W against 10.95 W for the referenced module which is 11.33% improvement. The electrical efficiencies for the cooled panel and the referenced modules are 14.30% and 13.60%, respectively, representing an improvement of 5.15% in the electrical efficiency. The cooled solar PV module had an average exergy efficiency of 7.99% compared to 5.61% for the referenced module. In terms of the economics, the results from the computations show that LCOE of the cooled panel can range between 0.198 and 0.603 /kWh, while that of the referenced module ranges from 0.221–0.671 /kWh depending on the number of days it operates

    Can Africa Serve Europe with Hydrogen Energy from Its Renewables?—Assessing the Economics of Shipping Hydrogen and Hydrogen Carriers to Europe from Different Parts of the Continent

    No full text
    There exists no single optimal way for transporting hydrogen and other hydrogen carriers from one port to the other globally. Its delivery depends on several factors such as the quantity, distance, economics, and the availability of the required infrastructure for its transportation. Europe has a strategy to invest in the production of green hydrogen in Africa to meet its needs. This study assessed the economic viability of shipping liquefied hydrogen (LH2) and hydrogen carriers to Germany from six African countries that have been identified as countries with great potential in the production of hydrogen. The results obtained suggest that the shipping of LH2 to Europe (Germany) will cost between 0.47 and 1.55 USD/kg H2 depending on the distance of travel for the ship. Similarly, the transportation of hydrogen carriers could range from 0.19 to 0.55 USD/kg H2 for ammonia, 0.25 to 0.77 USD/kg H2 for LNG, 0.24 to 0.73 USD/kg H2 for methanol, and 0.43 to 1.28 USD/kg H2 for liquid organic hydrogen carriers (LOHCs). Ammonia was found to be the ideal hydrogen carrier since it recorded the least transportation cost. A sensitivity analysis conducted indicates that an increase in the economic life by 5 years could averagely decrease the cost of LNG by some 13.9%, NH3 by 13.2%, methanol by 7.9%, LOHC by 8.03%, and LH2 by 12.41% under a constant distance of 6470 nautical miles. The study concludes with a suggestion that if both foreign and local participation in the development of the hydrogen market is increased in Africa, the continent could supply LH2 and other hydrogen carriers to Europe at a cheaper price using clean fuel

    Experimental Investigation of the Effect of a Combination of Active and Passive Cooling Mechanism on the Thermal Characteristics and Efficiency of Solar PV Module

    No full text
    A photovoltaic (PV) module’s electrical efficiency depends on the operating temperature of the cell. Electrical efficiency reduces with increasing PV module temperature which is one of the drawbacks of this technology. This is due to the negative temperature coefficient of a PV module which decreases its voltage significantly while the current increases slightly. This study combines both active and passive cooling mechanisms to improve the electrical output of a PV module. A heat sink made up of aluminum fins and an ultrasonic humidifier were used to cool the panel. The ultrasonic humidifier was used to generate a humid environment at the rear side of the PV module. The cooling process in the study was able to reduce the temperature of the panel averagely by 14.61 °C. This reduction led to a 6.8% improvement in the electrical efficiency of the module. The average power of 12.23 W was recorded for the cooled panel against 10.87 W for the referenced module. In terms of water consumption, a total of 1.5 L was approximately consumed during the whole experimental process due to evaporation. In effect, the proposed cooling approach was demonstrated as effective

    Techno-Economics and the Identification of Environmental Barriers to the Development of Concentrated Solar Thermal Power Plants in India

    No full text
    India is endowed with a lot of solar radiation as a result of its location. The Indian government therefore intends to maximize the usage of its solar energy resources through the development of solar power plants across the country. The concentrated solar power plant (CSP) is one of the technologies that rely on solar energy for its electricity generation. The type of condenser model in the CSP technology has the potential to affect its techno-economic viability. In this paper, a 100 MW solar tower power plant (STPP) with two different condenser models, i.e., the dry-cooled STPP and wet-cooled STPP models, are studied using the System Advisor Model (SAM) at six different geographical areas in India. The study employed the optimization of the thermal energy storage and the solar field size to identify the minimum levelized cost of electricity (LCOE) for all six locations. Results from the simulation show that the LCOE will range between 13 and 17 cents/kWh under the optimization conditions for the STPP dry-cooled condenser model, while that of the wet-cooled condenser model will range between 12.40 and 12.96 USD cents/kWh for the study locations. It was also observed that the optimized solar multiple (SM) for the dry-cooled STPP model ranges between 1.4 and 1.8, whereas that of the wet-cooled model ranges between 1 and 1.8. The study identified Bhopal as the best location for installing the STPP plant for both condenser models. In addition, this paper also discusses major potential barriers and government policies that are needed to develop CSP technologies in India. The outcome of the study is expected to help both government and other stakeholders in decision making and policy formulation for the sector

    Techno-Economics and the Identification of Environmental Barriers to the Development of Concentrated Solar Thermal Power Plants in India

    No full text
    India is endowed with a lot of solar radiation as a result of its location. The Indian government therefore intends to maximize the usage of its solar energy resources through the development of solar power plants across the country. The concentrated solar power plant (CSP) is one of the technologies that rely on solar energy for its electricity generation. The type of condenser model in the CSP technology has the potential to affect its techno-economic viability. In this paper, a 100 MW solar tower power plant (STPP) with two different condenser models, i.e., the dry-cooled STPP and wet-cooled STPP models, are studied using the System Advisor Model (SAM) at six different geographical areas in India. The study employed the optimization of the thermal energy storage and the solar field size to identify the minimum levelized cost of electricity (LCOE) for all six locations. Results from the simulation show that the LCOE will range between 13 and 17 cents/kWh under the optimization conditions for the STPP dry-cooled condenser model, while that of the wet-cooled condenser model will range between 12.40 and 12.96 USD cents/kWh for the study locations. It was also observed that the optimized solar multiple (SM) for the dry-cooled STPP model ranges between 1.4 and 1.8, whereas that of the wet-cooled model ranges between 1 and 1.8. The study identified Bhopal as the best location for installing the STPP plant for both condenser models. In addition, this paper also discusses major potential barriers and government policies that are needed to develop CSP technologies in India. The outcome of the study is expected to help both government and other stakeholders in decision making and policy formulation for the sector

    Exploring the Role of Communication Technologies, Governance, and Renewable Energy for Ecological Footprints in G11 Countries: Implications for Sustainable Development

    No full text
    Today, the world is confronted with the issue of environmental pollution as a result of our dependence on fossil fuels for our energy needs. Developed and developing countries are therefore adopting different strategies to curb environmental problems. This work is thus designed to probe the effect of renewable energy (RE), information and communication technologies (ICT), government stability, and GDP on ecological footprints (EF) in G11 nations. We utilized the annual data from 1990–2020 and applied robust methodologies to present the findings. The CS-ARDL method shows that renewable energy, ICT, and government stability are essential factors in lowering environmental pollution in G11 countries. Therefore, in light of the findings, this work suggests an increase in the use of RE sources such as solar, wind, and hydropower in the total energy mix of the various countries. RE usage improves air quality and saves the natural environment from further destruction. The countries also need to enhance their communication technologies in the economic sector. Moreover, policymakers must also introduce the required policies that would promote the use of RE in various countries. This will make people adopt clean energy sources at the domestic and commercial levels
    corecore