20 research outputs found

    Induction and characterization of anti-tumor endothelium immunity elicited by ValloVax therapeutic cancer vaccine.

    Get PDF
    ValloVax is a placental endothelium derived vaccine which induces tissue-nonspecific antitumor immunity by blocking tumor angiogesis. To elucidate mechanisms of action, we showed that production of ValloVax, which involves treating placental endothelial cells with IFN-gamma, results in upregulation of HLA and costimulatory molecules. It was shown that in mixed lymphocyte reaction, ValloVax induces Type I cytokines and allo-proliferative responses. Plasma from ValloVax immunized mice was capable of killing in vitro tumor-like endothelium but not control endothelium. Using defined antigens associated with tumor endothelial cells, specific molecular entities were identified as being targeted by ValloVax induced antibodies. Binding of predominantly IgG antibodies to ValloVax cells was confirmed by flow cytometry. Further suggesting direct killing of tumor endothelial cells was expression of TUNEL positive cells, as well as, reduction in tumor oxygenation. Supporting a role for antibody mediated responses, cell depletion experiments suggested a predominant role of B cells in maintaining an intact anti-tumor endothelial response. Adoptive transfer experiments suggested that infusion of CD3+ T cells from immunized mice was sufficient to transfer tumor protection. Generation of memory T cells selective to tumor endothelial specific markers was observed. Functional confirmation of memory responses was observed in tumor rechallenge experiments. Furthermore, we observed that both PD-1 or CTLA-4 blockade augmented antitumor effects of ValloVax. These data suggest a T cell induced B cell mediated anti-tumor endothelial response and set the framework clinical trials through elucidation of mechanism of action

    Lasers, stem cells, and COPD

    Get PDF
    The medical use of low level laser (LLL) irradiation has been occurring for decades, primarily in the area of tissue healing and inflammatory conditions. Despite little mechanistic knowledge, the concept of a non-invasive, non-thermal intervention that has the potential to modulate regenerative processes is worthy of attention when searching for novel methods of augmenting stem cell-based therapies. Here we discuss the use of LLL irradiation as a "photoceutical" for enhancing production of stem cell growth/chemoattractant factors, stimulation of angiogenesis, and directly augmenting proliferation of stem cells. The combination of LLL together with allogeneic and autologous stem cells, as well as post-mobilization directing of stem cells will be discussed

    Prevention of hyperglycemia-induced myocardial apoptosis by gene silencing of Toll-like receptor-4

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Apoptosis is an early event involved in cardiomyopathy associated with diabetes mellitus. Toll-like receptor (TLR) signaling triggers cell apoptosis through multiple mechanisms. Up-regulation of TLR4 expression has been shown in diabetic mice. This study aimed to delineate the role of TLR4 in myocardial apoptosis, and to block this process through gene silencing of TLR4 in the myocardia of diabetic mice.</p> <p>Methods</p> <p>Diabetes was induced in C57/BL6 mice by the injection of streptozotocin. Diabetic mice were treated with 50 μg of TLR4 siRNA or scrambled siRNA as control. Myocardial apoptosis was determined by TUNEL assay.</p> <p>Results</p> <p>After 7 days of hyperglycemia, the level of TLR4 mRNA in myocardial tissue was significantly elevated. Treatment of TLR4 siRNA knocked down gene expression as well as diminished its elevation in diabetic mice. Apoptosis was evident in cardiac tissues of diabetic mice as detected by a TUNEL assay. In contrast, treatment with TLR4 siRNA minimized apoptosis in myocardial tissues. Mechanistically, caspase-3 activation was significantly inhibited in mice that were treated with TLR4 siRNA, but not in mice treated with control siRNA. Additionally, gene silencing of TLR4 resulted in suppression of apoptotic cascades, such as Fas and caspase-3 gene expression. TLR4 deficiency resulted in inhibition of reactive oxygen species (ROS) production and NADPH oxidase activity, suggesting suppression of hyperglycemia-induced apoptosis by TLR4 is associated with attenuation of oxidative stress to the cardiomyocytes.</p> <p>Conclusions</p> <p>In summary, we present novel evidence that TLR4 plays a critical role in cardiac apoptosis. This is the first demonstration of the prevention of cardiac apoptosis in diabetic mice through silencing of the TLR4 gene.</p

    Exosomes as a tumor immune escape mechanism: possible therapeutic implications

    Get PDF
    Advances in cancer therapy have been substantial in terms of molecular understanding of disease mechanisms, however these advances have not translated into increased survival in the majority of cancer types. One unsolved problem in current cancer therapeutics is the substantial immune suppression seen in patients. Conventionally, investigations in this area have focused on antigen-nonspecific immune suppressive molecules such as cytokines and T cell apoptosis inducing molecules such as Fas ligand. More recently, studies have demonstrated nanovesicle particles termed exosomes are involved not only in stimulation but also inhibition of immunity in physiological conditions. Interestingly, exosomes secreted by cancer cells have been demonstrated to express tumor antigens, as well as immune suppressive molecules such as PD-1L and FasL. Concentrations of exosomes from plasma of cancer patients have been associated with spontaneous T cell apoptosis, which is associated in some situations with shortened survival. In this paper we place the "exosome-immune suppression" concept in perspective of other tumor immune evasion mechanisms. We conclude by discussing a novel therapeutic approach to cancer immune suppression by extracorporeal removal of exosomes using hollow fiber filtration technolog

    Feasibility of combination allogeneic stem cell therapy for spinal cord injury: a case report

    Get PDF
    Cellular therapy for spinal cord injury (SCI) is overviewed focusing on bone marrow mononuclear cells, olfactory ensheathing cells, and mesenchymal stem cells. A case is made for the possibility of combining cell types, as well as for allogeneic use. We report the case of 29 year old male who suffered a crush fracture of the L1 vertebral body, lacking lower sensorimotor function, being a score A on the ASIA scale. Stem cell therapy comprised of intrathecal administration of allogeneic umbilical cord blood ex-vivo expanded CD34 and umbilical cord matrix MSC was performed 5 months, 8 months, and 14 months after injury. Cell administration was well tolerated with no adverse effects observed. Neuropathic pain subsided from intermittent 10/10 to once a week 3/10 VAS. Recovery of muscle, bowel and sexual function was noted, along with a decrease in ASIA score to "D". This case supports further investigation into allogeneic-based stem cell therapies for SCI

    Intravenous ascorbic acid to prevent and treat cancer-associated sepsis?

    Get PDF
    The history of ascorbic acid (AA) and cancer has been marked with controversy. Clinical studies evaluating AA in cancer outcome continue to the present day. However, the wealth of data suggesting that AA may be highly beneficial in addressing cancer-associated inflammation, particularly progression to systemic inflammatory response syndrome (SIRS) and multi organ failure (MOF), has been largely overlooked. Patients with advanced cancer are generally deficient in AA. Once these patients develop septic symptoms, a further decrease in ascorbic acid levels occurs. Given the known role of ascorbate in: a) maintaining endothelial and suppression of inflammatory markers; b) protection from sepsis in animal models; and c) direct antineoplastic effects, we propose the use of ascorbate as an adjuvant to existing modalities in the treatment and prevention of cancer-associated sepsis

    Endometrial regenerative cells: A novel stem cell population

    Get PDF
    Angiogenesis is a critical component of the proliferative endometrial phase of the menstrual cycle. Thus, we hypothesized that a stem cell-like population exist and can be isolated from menstrual blood. Mononuclear cells collected from the menstrual blood contained a subpopulation of adherent cells which could be maintained in tissue culture for >68 doublings and retained expression of the markers CD9, CD29, CD41a, CD44, CD59, CD73, CD90 and CD105, without karyotypic abnormalities. Proliferative rate of the cells was significantly higher than control umbilical cord derived mesenchymal stem cells, with doubling occurring every 19.4 hours. These cells, which we termed "Endometrial Regenerative Cells" (ERC) were capable of differentiating into 9 lineages: cardiomyocytic, respiratory epithelial, neurocytic, myocytic, endothelial, pancreatic, hepatic, adipocytic, and osteogenic. Additionally, ERC produced MMP3, MMP10, GM-CSF, angiopoietin-2 and PDGF-BB at 10–100,000 fold higher levels than two control cord blood derived mesenchymal stem cell lines. Given the ease of extraction and pluripotency of this cell population, we propose ERC as a novel alternative to current stem cells sources

    Enhanced presentation of MHC class Ia, Ib and class II-restricted peptides encapsulated in biodegradable nanoparticles: a promising strategy for tumor immunotherapy

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Many peptide-based cancer vaccines have been tested in clinical trials with a limited success, mostly due to difficulties associated with peptide stability and delivery, resulting in inefficient antigen presentation. Therefore, the development of suitable and efficient vaccine carrier systems remains a major challenge.</p> <p>Methods</p> <p>To address this issue, we have engineered polylactic-co-glycolic acid (PLGA) nanoparticles incorporating: (i) two MHC class I-restricted clinically-relevant peptides, (ii) a MHC class II-binding peptide, and (iii) a non-classical MHC class I-binding peptide. We formulated the nanoparticles utilizing a double emulsion-solvent evaporation technique and characterized their surface morphology, size, zeta potential and peptide content. We also loaded human and murine dendritic cells (DC) with the peptide-containing nanoparticles and determined their ability to present the encapsulated peptide antigens and to induce tumor-specific cytotoxic T lymphocytes (CTL) <it>in vitro</it>.</p> <p>Results</p> <p>We confirmed that the nanoparticles are not toxic to either mouse or human dendritic cells, and do not have any effect on the DC maturation. We also demonstrated a significantly enhanced presentation of the encapsulated peptides upon internalization of the nanoparticles by DC, and confirmed that the improved peptide presentation is actually associated with more efficient generation of peptide-specific CTL and T helper cell responses.</p> <p>Conclusion</p> <p>Encapsulating antigens in PLGA nanoparticles offers unique advantages such as higher efficiency of antigen loading, prolonged presentation of the antigens, prevention of peptide degradation, specific targeting of antigens to antigen presenting cells, improved shelf life of the antigens, and easy scale up for pharmaceutical production. Therefore, these findings are highly significant to the development of synthetic vaccines, and the induction of CTL for adoptive immunotherapy.</p

    Xenon in the treatment of panic disorder: an open label study

    Get PDF
    Abstract Background Current treatments of panic disorder (PD) are limited by adverse effects, poor efficacy, and need for chronic administration. The established safety profile of subanesthetic concentrations of xenon gas, which is known to act as a glutamate subtype NMDA receptor antagonist, coupled with preclinical studies demonstrating its effects in other anxiety related conditions, prompted us to evaluate its feasibility and efficacy in treatment of patients with PD. Methods An open-label clinical trial of xenon–oxygen mixture was conducted in 81 patients with PD; group 1 consisting of patients only with PD (N = 42); and group 2 patients with PD and other comorbidities (N = 39). Results Based on the analysis of the results of a number of psychometric scales used in this study (SAS, HADS, CGI), several conclusions can be made: (1) xenon is a potentially effective modality in acute treatment of PD; (2) an anti-panic effect of xenon administration persists for at least 6 months after the completion of the active phase of treatment; (3) xenon inhalation is well tolerated, with the drop-out rates being much lower than that of conventional pharmacotherapy (5.8% vs. 15%); (4) the severity of depressive disorders that frequently accompany PD can be significantly reduced with the use of xenon; (5) xenon may be considered as an alternative to benzodiazepines in conjunction with cognitive-behavioral therapy as a safe modality in treatment of anxiety disorder. Conclusions These data support the need for randomized double-blind clinical trials to further study xenon-based interventions. Trial registration This clinical trial was retrospectively registered on April 14th, 2017 as ISRCTN15184285 in the ISRCTN database
    corecore