8 research outputs found

    A genetic algorithm with memory for mixed discrete-continuous design optimization

    Get PDF
    This paper describes a new approach for reducing the number of the fitness function evaluations required by a genetic algorithm (GA) for optimization problems with mixed continuous and discrete design variables. The proposed additions to the GA make the search more effective and rapidly improve the fitness value from generation to generation. The additions involve memory as a function of both discrete and continuous design variables, multivariate approximation of the fitness function in terms of several continuous design variables, and localized search based on the multivariate approximation. The approximation is demonstrated for the minimum weight design of a composite cylindrical shell with grid stiffeners

    A Genetic Algorithm for Mixed Integer Nonlinear Programming Problems Using Separate Constraint Approximations

    Get PDF
    This paper describes a new approach for reducing the number of the fitness and constraint function evaluations required by a genetic algorithm (GA) for optimization problems with mixed continuous and discrete design variables. The proposed additions to the GA make the search more effective and rapidly improve the fitness value from generation to generation.The additions involve memory as a function of both discrete and continuous design variables, and multivariate approximation of the individual functions' responses in terms of several continuous design variables. The approximation is demonstrated for the minimum weight design of a composite cylindrical shell with grid stiffeners

    discrete-continuous

    No full text
    genetic algorithm with memory for mixe
    corecore