
A Genetic Algorithm for Mixed

Integer Nonlinear Programming

Problems Using Separate Constraint

Approximations

Vladimir B. Gantovnik∗, Zafer Gürdal†,

Layne T. Watson,‡ and Christine M. Anderson-Cook§

Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061

Abstract

This paper describes a new approach for reducing the number of the fitness and constraint

function evaluations required by a genetic algorithm (GA) for optimization problems with

mixed continuous and discrete design variables. The proposed additions to the GA make the

search more effective and rapidly improve the fitness value from generation to generation.

The additions involve memory as a function of both discrete and continuous design variables,

and multivariate approximation of the individual functions’ responses in terms of several

continuous design variables. The approximation is demonstrated for the minimum weight

design of a composite cylindrical shell with grid stiffeners.

Introduction

There are many diverse applications that are mathematically modelled in terms of mixed

discrete-continuous variables. The optimization of such models is typically difficult due to

their combinatorial nature and potential existence of multiple local minima in the search

space. The engineering problems which contain integer, discrete, zero-one, and continuous

design variables are often referred to as mixed integer nonlinear programming (MINLP)

problems.

∗Graduate Research Assistant, Department of Engineering Science and Mechanics, Virginia Polytechnic
Institute and State University, Blacksburg, VA, 24061, Student Member AIAA

†Professor, Departments of Aerospace and Ocean Engineering, and Engineering Science and Mechanics,
Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, Associate Fellow AIAA

‡Professor, Departments of Computer Science and Mathematics, Virginia Polytechnic Institute and State
University, Blacksburg, VA, 24061

§Associate Professor, Department of Statistics, Virginia Polytechnic Institute and State University,
Blacksburg, VA, 24061

1 of 23

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Computer Science Technical Reports @Virginia Tech

https://core.ac.uk/display/10675895?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Genetic algorithms (GA) are powerful tools for solving MINLP problems. These methods

do not require gradient or Hessian information. However, to reach an optimal solution with

a high degree of confidence, they typically require a large number of analyses during the

optimization search. Performance of these methods is even more of an issue for problems that

include continuous variables. Several studies have concentrated on improving the reliability

and efficiency of GAs. Hybrid algorithms formed by the combination of a GA with local

search methods provide increased performance when compared to a GA with a discrete

encoding of real numbers or local search alone.1

Although GAs are robust global optimizers, they typically require a very large number

of fitness function evaluations. Moreover, it is commonly observed that fitness values are

frequently recalculated for some designs that appear repeatedly during the evolution of the

population. This suggests an opportunity for performance improvement. In order to reduce

the computational cost, the authors earlier used local improvements and memory for discrete

problems so that information from previously analyzed design points is stored and utilized in

later searches.2,3 In the first approach a memory binary tree was employed for a composite

panel design problem to store pertinent information about laminate designs that have al-

ready been analyzed.2 After the creation of a new population of designs, the tree structure is

searched for either a design with identical stacking sequence or similar performance, such as

a laminate with identical in-plane strains. Depending on the kind of information that can be

retrieved from the tree, the analysis for a given laminate may be significantly reduced or may

not be required at all. The second method is called local improvement.3 This technique was

applied to the problem of maximizing the buckling load of a rectangular laminated composite

plate. The information about previously analyzed designs is used to construct an approxi-

mation to buckling load in the neighborhood of each member of the population of designs.

After that, the approximations are used to search for improved designs in small discrete

spaces around nominal designs. These two methods demonstrated substantial improvements

in computational efficiency for purely discrete optimization problems. The implementation,

however, was not suitable for handling continuous design variables.

New approaches have been proposed to overcome this shortcoming. In particular, a new

version of GA has been recently developed,4 consisting of memory as a function of both

discrete and continuous design variables using spline5 and multivariate6 approximations of

the constraint functions in terms of continuous design variables.

The work here proposes to enhance the efficiency and accuracy of the GA with memory

using multivariate approximations of the objective and constraint functions individually in-

stead of direct approximations of the overall fitness function. The primary motivation for the

proposed improvements is the nature of the fitness function in constrained engineering design

2 of 23

optimization problems. Since GAs are algorithms for unconstrained optimization, constraints

are typically incorporated into the problem formulation by augmenting the objective function

of the original problem with penalty terms associated with individual constraint violations.

The resulting fitness function is usually highly nonlinear and discontinuous, which makes

the multivariate approximation highly inaccurate unless a large number of exact function

evaluations are performed. Since the individual response functions in many engineering prob-

lems are mostly smooth functions of the continuous variables (although they can be highly

nonlinear), high quality approximations to individual functions can be constructed without

requiring a large number of function evaluations. The proposed modification is, therefore,

expected to improve the efficiency of the memory constructed in terms of the continuous vari-

ables. The paper presents the algorithmic implementation of the proposed memory scheme

and demonstrates the efficiency of the proposed multivariate approximation procedure for

the weight optimization of a lattice shell with laminated composite skins subjected to axial

compressive load. The composite shell design problem is used as a demonstration prob-

lem, instead of than a synthetic constrained optimization problem. Results are generated to

demonstrate the advantages of the proposed improvements to a standard genetic algorithm.

Genetic algorithm package

A Fortran 90 GA framework that was designed in an earlier research effort was used for

the composite laminate structure design.7 This framework includes a module, encapsulat-

ing GA data structures, and a package of GA operators. The module and the package of

operators result in what we call a standard genetic algorithm. The proposed algorithm is

incorporated within the GA framework to illustrate performance of the binary tree memory

and multivariate approximation. An integer alphabet is used to code ply genes. The contin-

uous variables represented by floating-point numbers had already been implemented in the

GA framework data structure as geometry chromosomes.

Binary tree memory

A binary tree is a linked list structure in which each node may point to up to two other

nodes. In a binary search tree, each left pointer points to nodes containing elements that are

smaller than the element in the current node; each right pointer points to nodes containing

elements that are greater than the element in the current node. The binary tree is used to

store data pertinent to the design such as the design string and its associated fitness and

constraint function values. A binary tree has several properties of great practical value,

one of which is that the data can be retrieved, modified, and inserted relatively quickly. If

the tree is perfectly balanced, the cost of inserting an element in a tree with n nodes is

3 of 23

proportional to log2 n steps, and rebalancing the tree after an insertion may take as little as

several steps, but at most takes log2 n steps. Thus, the total time is of the order of log2 n.8

By examining the mechanisms of the GA operators, it is observed that the diversity of

a population trends to decrease as the algorithm runs longer. The fitness values for the

same chromosomes are recalculated repeatedly, especially towards the end of the optimiza-

tion process. If previously calculated fitness values can be efficiently saved and retrieved,

computation time will decrease significantly. The memory procedure eliminates the possi-

bility of repeating an analysis that could be expensive. Algorithm 1 shows the pseudo code

of the fitness function evaluation with the aid of the binary tree. After a new generation of

Algorithm 1 Evaluation of fitness function using binary tree.

search for the given design in the binary tree;
if found then

get the fitness function value from the binary tree;
else

perform exact analysis;
end if

designs is created by the genetic operations, the binary tree is searched for each new design.

If the design is found, the fitness value is retrieved from the binary tree without conducting

an analysis. Otherwise, the fitness is obtained based on an exact analysis. This new design

and its fitness value are then inserted in the tree as a new node. The major improvement

proposed here is to store not just the fitness value but the values of every function that can

contribute to the computation of the fitness function.

Response surface approximations

The procedure described above works well for purely discrete optimization problems

where designs are completely described by discrete strings. In case of mixed optimization

problems where designs include discrete and continuous variables, the solution becomes more

complicated. If the continuous variables are also discretized into a fine discrete set, the

possibility of creating a child design that has the same discrete and continuous parts as one

of the earlier designs diminishes substantially. In the worst case, if the continuous design

variables are represented as real numbers, which is the approach used by most recent research

work, it may not be possible to create a child design that has the exact same real part as one

of the parents, rendering the binary tree memory useless, and result in many exact analyses

even if the real part of the new child is different from one of the earlier designs by a minute

amount.

4 of 23

The main idea of the memory approach for problems with mixed discrete continuous

variables is to construct a response surface approximation for every constraint function as a

function of the continuous variables using historical data values, and estimate from the stored

data whenever appropriate. The memory in this case consists of two parts: a binary tree,

which consists of the nodes that have different discrete parts of the design, and a storage part

at each node that keeps the continuous values and the corresponding constraint functions’

values. That is, each node contains several real arrays that store the continuous variables’

values and their corresponding constraint functions’ values. In order for the memory to be

functional, it is necessary to have accumulated a sufficient number of designs with different

continuous values for a particular discrete design point so that the approximations can be

constructed. Naturally, some of the discrete nodes will not have more than a few designs

with different continuous values. However, it is possible that as the GA search progresses

promising discrete parts will start appearing repeatedly with different continuous values. In

this case, one will be able to construct good quality response surface approximations to the

data.

The response surface approximation approach is an extension of the previous work by

the authors where a spline-based approach was used for only one continuous variable.5 An

evolving database of continuous variable points is used in the current work to construct

multivariate response surface approximations at those discrete nodes that are processed

frequently. The modified quadratic Shepard method is a local smoothing method used for

the approximation of scattered data for the cases of two and three independent continuous

design variables.9–11 It has been suggested that the modified quadratic Shepard method

overcomes the drawbacks of a well known interpolation scheme given by Shepard.12 This

method may be the best known among all scattered data interpolants for a general number of

variables, and has the advantage of numerical efficiency, stability, small storage requirements,

and easy generalization to more than two independent variables. It, therefore, seems to be

the most suitable candidate for handling a very large amount of data and for use in the case

of a high number of independent variables.

In addition to building the multivariate approximations, it is important to assess accuracy

of the multivariate approximation at new continuous points that have not been encountered

before, so that a decision may be made either to accept the approximation or perform

exact function evaluation. Based on the multivariate approximation, the proposed algorithm

described by the following pseudo code is then used to decide when to retrieve the constraint

function values from the approximations, and when to do an exact analysis and add the new

data point to the approximation database.

For the description of the pseudo code, let v ∈ Zk be a k-dimensional integer design

5 of 23

Algorithm 2 Evaluation of fitness function using binary tree and m-dimensional approxi-
mations to the constraint functions, case where v is not found in the tree.

if v is not found in the tree then
evaluate g0(v, x), . . . , gp(v, x);
evaluate f(v, x); n := 1; x(1) := x;
for j = 0 to p do

cj := 1; rj := 0.0; Ij1 := 1; dj1 := 0.0;

Tj :=
({(

Iji, gj(v, x(Iji)), dji

)}cj

i=1
, cj, rj

)
;

end for
D :=

(
{x(i)}n

i=1, T0, T1, . . . , Tp

)
; add a node corresponding to (v, D);

return f(v, x);
end if

vector for the discrete space, x ∈ Em a real m-dimensional design vector for the continuous

variables, g0(v, x) the corresponding objective function, g1(v, x), . . . , gp(v, x) the correspond-

ing constraint functions, and f
(
v, x
)

the corresponding fitness value of the individual defined

in terms of the constraint functions and the objective function.

Furthermore, define d ∈ E to be a real distance corresponding to a trust region radius

about a specific point in the database. Let D =
(
{x(i)}n

i=1, T0, T1, . . . , Tp

)
contain the set of

n observed exact analysis points and their corresponding information within a given discrete

node, where

Tj =
({(

Iji, gj(v, x(Iji)), dji

)}cj

i=1
, cj, rj

)
is the data set associated with the jth constraint function, Iji is the index pointing to the

global design data set {x(i)}n
i=1, gj

(
v, x(Iji)

)
is the value of the jth constraint, dji is the

corresponding trust region radius, cj is the counter indicating the number of points in the

design data set corresponding to the jth constraint,

rj =

∣∣∣∣ max
1≤i≤cj

{
gj(v, x(Iji))

}
− min

1≤i≤cj

{
gj(v, x(Iji))

}∣∣∣∣
is the difference between the current maximum and minimum values of the jth constraint.

Finally, each node in the binary tree memory structure records a tuple of the form (v, D).

The pseudo code for processing a candidate individual (v, x) is defined by Algorithms 2 and 3.

The parameters cmin
j are defined separately for each constraint function, and their values are

based on the function complexity and approximation method used for the constraint function.

The algorithm uses three real user-specified parameters, d◦, δ, and ε, all indented by j. The

parameter d◦ > 0 is an upper bound on the trust region radius about each sample point x(i).

The parameter δ is chosen to satisfy 0 < δ < 1, and in higher dimensions protects against

6 of 23

Algorithm 3 (Continuation of Algorithm 2) Evaluation of fitness function using binary tree
and m-dimensional approximations to the constraint functions, case where v is found in the
tree.

if v is found in the tree then
for j = 0 to p do

if B(j, v, x) then
evaluate gj(v, x);

else
if cj < cmin

j then

evaluate gj(v, x); D1 := D1 ∪ {x}; n := |D1|; x(n) := x; cj := cj + 1;
(Tj)1 := (Tj)1 ∪ {(n, gj(v, x), 0.0)}; Ijcj

:= n;

rj :=

∣∣∣∣ max
1≤i≤cj

{
gj(v, x(Iji))

}
− min

1≤i≤cj

{
gj(v, x(Iji))

}∣∣∣∣;
else

construct sj(x) using the data in{(
x(Iji), gj

(
v, x(Iji)

))}cj

i=1
;

define k and d∗ by

d∗ := djk −
∥∥x− x(Ijk)

∥∥ = max
1≤i≤cj

{
dji −

∥∥x− x(Iji)
∥∥};

if d∗ ≥ 0.0 and
∣∣gj

(
v, x(Ijk)

)
− sj(x)

∣∣ < δj rj then
gj(v, x) := sj(x);

else
evaluate gj(v, x);
D1 := D1 ∪ {x}; n := |D1|; x(n) := x;
cj := cj + 1;
if |gj(v, x)− sj(x)| > εj then

djcj
:= 0.0;

else
djcj

:= min
{

d◦j ,
∥∥x− x(Ijk)

∥∥}; djk := djcj
;

end if
(Tj)1 := (Tj)1 ∪

{(
n, gj(v, x), djcj

)}
; Ijcj

:= n;

rj :=

∣∣∣∣ max
1≤i≤cj

{
gj(v, x(Iji))

}
− min

1≤i≤cj

{
gj(v, x(Iji))

}∣∣∣∣;
end if

end if
end if

end for
evaluate f(v, x) using g0(v, x), . . . , gp(v, x);
return f(v, x);

end if

7 of 23

large variations in f in unsampled directions. Finally, the parameter ε > 0 is the selected

acceptable approximation accuracy, and is solely based on engineering considerations.

Local improvement

Local improvement is essentially an addition to improve the performance of the GA with

memory binary tree and separate multivariate approximations. The effectiveness of local

improvement was shown in previous work.5,6 The values of the continuous variables at a

given discrete node are either randomly assigned or obtained through the GA operations. If

explicit multivariate approximations for all constraint functions are available at a given node,

it is possible to generate good candidates for the continuous design variables for the next child

at that node thorough local optimization rather than depending on random actions from the

GA operators. After construction of all initial approximations g̃i of gi, one can easily find

the approximate fitness function f̃(x) whose evaluations do not require any exact function

evaluations. Next it is possible to find the design vector x∗ that optimizes the approximate

function f̃(x) in some compact subset Ω ⊂ Em containing the real data points x(i) associated

with that node. This optimal x∗ vector is stored at the discrete node in addition to the rest

of the database D. If, in future generations, a discrete node that has a stored x∗ vector is

reached through the GA operations on the discrete part v of the design, then, rather than

performing crossover or mutation on the real part, (v, x∗) is used as the child design for

the next generation. This child design is treated like the other new designs in the child

population to which Algorithm 2 is applied to avoid exact analysis. In an effort to reduce

premature convergence the local improvement procedure is applied with some probability.

Design optimization problem

The design of a fiber reinforced composite lattice shell with specified radius, length,

and axial load level is considered as a demonstration problem for the procedure described.

Such shells supported by a lattice have been considered as a replacement to solid shells,

stiffened shells, and honeycomb structures.13–15 Consider a lattice cylindrical shell loaded

with compressive axial load P . In general, proper design would involve determination of

rib parameters (dimension of cross section, material, spacing, and orientation angle, ϕ),

skin parameters (the number of layers, their materials, thicknesses, and orientation angles,

θk) that satisfy strength and stability constraints while minimizing the weight of the shell.

Constraints considered include rib strength constraint (g1), skin strength constraint (g2), rib

local buckling constraint (g3), and general buckling constraint (g4). All constraint equations

are based on the lattice cylindrical shell model developed by Bunakov.16–18

The mixed optimization problem considered here operates on three design variables v, x1,

and x2. The discrete variable is the stacking sequence of the skins, v = {θ1, . . . , θn}, where n

8 of 23

is an implicit design variable dictated by the number of layers in the skin stacking sequence.

We shall restrict our consideration to two continuous design variables, namely, the helical rib

height, x1 = H, and the orientation angle of helical ribs with respect to the axial direction,

x2 = ϕ. The optimization problem can be formulated as finding the stacking sequences of

the skins, the angle of helical ribs, and the helical rib height in order to minimize the mass of

the shell, g0, and satisfy all constraints. The set of design variables is expressed as a vector

τ = (v, x1, x2). The optimization problem can be written as

min
τ

g0(τ) (1)

such that

g1(τ) ≥ 0 (rib strength),

g2(τ) ≥ 0 (skin strength),

g3(τ) ≥ 0 (rib local buckling),

g4(τ) ≥ 0 (general shell buckling),

H ∈ [Hmin, Hmax],

ϕ ∈ [ϕmin, ϕmax],

θk ∈ {0◦,±45◦, 90◦}, (k = 1, n),

n ∈ [nmin, nmax],

where Hmin and Hmax are the lower and upper bounds of the rib height; ϕmin and ϕmax

are the lower and upper bounds of the angle of helical ribs, θk is the ply orientation an-

gle in the kth skin ply, n is the total number of skin plies, nmin and nmax are minimum

and maximum possible values of n. The above problem may not be a realistic composite

design formulation, but used instead of a completely artificial constrained optimization prob-

lem. A standard laminate optimization typically includes additional constraints such as ply

contiguity, interlaminar stress, core strength, etc.

The constrained optimization problem is transformed into an unconstrained maximiza-

tion problem using a penalty function approach. The critical constraint is defined as

gcr(τ) = min
1≤i≤4

{gi(τ)}. (2)

9 of 23

The fitness function f to be maximized is defined as

f(τ) =

 −g0(τ) + αgcr(τ), gcr(τ) ≥ 0,

−g0(τ) + βgcr(τ), gcr(τ) < 0,
(3)

where α is a bonus parameter, β is a user defined penalty parameter.

Results

A cylindrical lattice shell considered in this study is made of fiberglass-epoxy composite

material with density ρ = 1600 kg/m3. The shell radius and length are R = 0.7 m and

L = 1.8 m, respectively. The specified axial compressive load is P = 106 N/m. The shell has

external and internal skins made of T300/5208 graphite-epoxy unidirectional plies with basic

ply thickness h0 = 0.125 mm. The material properties of the skin plies are given in Table 1.

The lattice shell has ±ϕ unidirectional helical ribs with elastic modulus E = 45 GPa, and

shear modulus G = 1 GPa. The ribs have initial rectangular cross sections of width b = 4

mm and height H. The helical rib spacing is a = 40 mm. The compressive strength of ribs

is σ̄r = 240 MPa. The possible ranges for the design variables are given in Table 2.

GA parameters

The values of the GA parameters used in the experiments are shown in Table 3. The GA

stopping condition is a limit on the total number of fitness function evaluations conducted by

the standard GA, (n◦e)max = 500000. The best known global optimal design obtained by the

standard GA is presented in Table 4. The table gives the average number of exact analyses

from ten runs of individuals (n̄◦e), the continuous design variables (x1, x2), the discrete design

variable (v), the objective function value (g0), the critical constraint number (jcr), the critical

constraint value (gcr), and fitness function value (f). This design was obtained in an average

of about 113615 function evaluations by the standard GA.

Effect of GA improvements

The results presented in this section focus on the ability of the proposed algorithm to save

computational time during GA optimization with the multivariate approximation used as a

memory device. The best design is identical to the results presented previously in Table 4

for the baseline algorithm. The performance of the GA with the multivariate approximation

is presented in Table 5, which shows averages from ten runs with the prescribed parameters

ε = 0.01, δ = 0.1, d◦ = 0.5. This table shows the average number of attempts to evaluate

constraint functions (n̄i), the average number of exact analyses (n̄e), the average percent

savings (ξ̄) in terms of constraint function evaluations, the average percent savings (ζ̄) in

10 of 23

terms of constraint function evaluations as compared with the standard GA result reported

in Table 4, and the mean absolute error (E) due to the approximations. The average percent

savings (ξ̄) in terms of number of constraint function evaluations is defined by

ξ̄ =
1

r

r∑
k=1

(
1− (ne)k

(ni)k

)
× 100%, (4)

where r is the number of the runs. The average percent savings (ζ̄) in terms of constraint

function evaluations as compared with the standard GA is defined by

ζ̄ =
1

r

r∑
k=1

(
1− (ne)k

n̄◦e

)
× 100%. (5)

The average mean absolute error E is defined as

E =
1

r

r∑
k=1

(
1

ns

ns∑
i=1

|g(xi)− s(xi)|

)
k

, (6)

where ns = ni − ne is the total number of acceptable approximate evaluations for the given

constraint. This error is computed every time that the algorithm decides to extract an

approximation of the constraint value without an exact analysis.

The results of the experiments show that the cost of the GA with continuous variables

could be reduced up to 90% relative to the standard GA by using the approximation pro-

cedure. For the problem considered, the computation of the fitness functions is not very

expensive in terms of CPU time. However, for realistic problems in which evaluation of the

objective and/or constraint functions may require large finite element analysis models, the

computation effort spent on evaluating the fitness function far exceeds that of the memory

tree and approximation constructions. Therefore the developed approach has great potential

for problems with expensive fitness functions.

Table 6 contains information about the problem design space. Table 6 includes the lami-

nate chromosome length (λ), the number of the possible alphabet elements q, the maximum

number of nodes in the binary tree, i.e., the number of all possible combinations (Nmax),

the actual average number of nodes in the binary tree (N̄t), the average number of nodes

containing at least one working approximation (N̄a), the average number of design points

used to construct approximations in all nodes of the binary tree (N̄p). The genetic algorithm

with memory converges fast and uses about 8% of all available binary tree nodes to obtain

the optimal solution.

The mean absolute error E due to the approximation and the savings (ξ̄) in terms of

11 of 23

the number of constraint evaluations for different values of the parameters ε, and δ with

d◦ = 0.5 for all constraint functions are shown in Table 7. It is possible to further enhance

the performance of the algorithm by a more precise tuning of its parameters. Table 7 shows

the expected trends; both average savings (ξ̄) and average absolute error (E) increase as

either ε or δ increases.

Table 8 shows the performance of the GA with separate constraint approximations and lo-

cal improvement. The local improvement procedure is a quasi-Newton optimization method.

In an effort to reduce premature convergence of the GA, the local improvement procedure

is applied with probability 0.5. As expected, the GA with approximations and local im-

provement converges faster in terms of number of fitness function evaluations than the GA

with just the separate constraint approximations. Both algorithms with separate constraint

approximations demonstrate good convergence in comparison with the standard GA, and

noticeably decrease the number of exact analyses. However, it should be noted that the

mean absolute error is increased for the results with the local improvement procedure. A

trade-off analysis between the acceptable approximation accuracy and the overall modified

GA performance is indicated.

Conclusions

Modifications of the standard GA to save previously computed fitness values provide

significant performance improvement. A GA with memory along with multivariate approxi-

mations of the objective and constraint functions individually was applied to the problem of

weight minimization of a lattice shell with mixed discrete and continuous design variables.

The use of memory based on a binary tree for the discrete part of the design variables avoids

repeating analyses of previously encountered designs. The multivariate approximation for

continuous variables saves unnecessary exact analyses for points close to previous values.

Acknowledgements

This research was supported in part by Air Force Office of Scientific Research grant

F49620-99-1-0128 and National Science Foundation grant DMS-9625968.

References
1Seront, G. and Bersini, H., “A New GA-Local Search Hybrid for Optimization Based on

Multi Level Single Linkage Clustering,” July 2000, Genetic and Evolutionary Computation

Conference (GECCO-2000).

2Kogiso, N., Watson, L. T., Gürdal, Z., and Haftka, R. T., “Genetic algorithms with

local improvement for composite laminate design,” Structural Optimization, Vol. 7, No. 4,

1994, pp. 207–218.

12 of 23

3Kogiso, N., Watson, L. T., Gürdal, Z., Haftka, R. T., and Nagendra, S., “Design of com-

posite laminates by a genetic algorithm with memory,” Mechanics of Composite Materials

and Structures , Vol. 1, No. 1, 1994, pp. 95–117.

4Gantovnik, V. B., Gürdal, Z., and Watson, L. T., “A genetic algorithm with memory for

optimal design of laminated sandwich composite panels,” April 2002, 43rd AIAA/ ASME/

ASCE/ AHS/ ASC Structures, Structural Dynamics, and Materials Conference, AIAA Paper

No. 2002-1221.

5Gantovnik, V. B., Gürdal, Z., and Watson, L. T., “A genetic algorithm with memory

for optimal design of laminated sandwich composite panels,” Composite Structures , Vol. 58,

2002, pp. 513–520.

6Gantovnik, V. B., Anderson-Cook, C. M., Gürdal, Z., and Watson, L. T., “A genetic

algorithm with memory for mixed discrete-continuous design optimization,” Sept. 2002, 9th

AIAA/ ISSMO Symposium on Multidisciplinary Analysis and Optimization, AIAA Paper

No. 2002-5431.

7McMahon, M. T., Watson, L. T., Soremekun, G. A., Gürdal, Z., and Haftka, R. T.,

“A Fortran 90 genetic algorithm module for composite laminate structure design,” Eng.

Computers , Vol. 14, 1998, pp. 260–273.

8Vowels, R. A., Algorithms and Data Structures in F and Fortran, Unicomp, Inc, Tucson,

Arizona, 1998.

9Renka, R. J., “Multivariate interpolation of large sets of scattered data,” ACM Trans-

actions on Mathematical Software, Vol. 14, No. 2, June 1988, pp. 139–148.

10Renka, R. J., “Algorithm 660: QSHEP2D: quadratic Shepard method for bivariate

interpolation of scattered data,” ACM Transactions on Mathematical Software, Vol. 14,

No. 2, June 1988, pp. 149–150.

11Renka, R. J., “Algorithm 661: QSHEP3D: quadratic Shepard method for trivariate

interpolation of scattered data,” ACM Transactions on Mathematical Software, Vol. 14,

No. 2, June 1988, pp. 151–152.

12Shepard, D., “A two-dimensional interpolation function for irregularly spaced data,”

Proceedings of the 23rd National Conference, ACM , 1968, pp. 517–523.

13Vasiliev, V. V. and Lopatin, A. V., “Theory of Lattice and Stiffened Composite Shells,”

Mechanics of Composite Materials , edited by Y. M. Tarnopolskii, Zinatne, Riga, 1992, pp.

82–88, (in Russian).

14Vasiliev, V. V., Barynin, V. A., and Rasin, A. F., “Anisogrid lattice structures - survey

of development and application,” Composite Structures , Vol. 54, 2001, pp. 361–370.

15Slinchenko, D. and Verijenko, V. E., “Structural analysis of composite lattice shells of

13 of 23

revolution on the basis of smearing stiffness,” Composite Structures , Vol. 54, 2001, pp. 341–

348.

16Bunakov, V. A. and Protasov, V. D., “Cylindrical lattice composite shells,” Mechanics

of Composite Materials , , No. 6, 1989, pp. 1046–1053, (in Russian).

17Belousov, P. S. and Bunakov, V. A., “Bending of cylindrical lattice composite shells,”

Mechanics of Composite Materials , , No. 2, 1992, pp. 225–231, (in Russian).

18Bunakov, V. A., “Design of Axially Compressed Composite Cylindrical Shells with

Lattice Stiffeners,” Optimal Design, edited by V. V. Vasiliev and Z. Gürdal, Technomic

Publishing Co., Lancaster, PA, 1999, pp. 207–246.

14 of 23

List of Table Captions
Table 1: The material properties of the skin (T300/5208)

Table 2: Ranges for the design variables

Table 3: GA parameters used in the experiments

Table 4: The best known optimal design using standard GA

Table 5: The efficiency of the multivariate approximations

Table 6: Design space for GA with multivariate approximation

Table 7: The average percent savings (ξ̄) and the average error of the multivariate approx-
imations (E) as functions of the parameters ε and δ with d◦ = 0.5

Table 8: The efficiency of the multivariate approximations and local improvement with
ε = 0.01, δ = 0.1, and d◦ = 0.5

15 of 23

Stiffness parameters, GPa Strength parameters, MPa

E1 E2 G12 ν12 Xt Yt Xc Yc S

181.0 10.3 7.17 0.28 1500.0 40.0 1500.0 246.0 68.0

Table 1: 16 of 23

Design variable Range

H ∈ [Hmin, Hmax] [0.001, 0.1] m

ϕ ∈ [ϕmin, ϕmax] [5◦, 85◦]

θk, k = 1, n {0◦,±45◦, 90◦}
n ∈ [nmin, nmax] [2, 14]

Table 2: 17 of 23

Parameter Value

Selection type elitist

Maximum number of generations 25000

Population size 20

Laminate chromosome length (λ) 7

Crossover type:

• for laminate chromosomes one-point

• for geometry chromosomes uniform

Probability of crossover (pc):

• for laminate chromosomes 1.0

• for geometry chromosomes 1.0

Probability of mutation (pm):

• for laminate chromosomes 0.05

• for geometry chromosomes 0.01

Bonus parameter α 0.0

Penalty parameter β 10.0

Table 3: 18 of 23

n̄◦e x1 x2 v g0 jcr gcr f

113615 0.0100 62.8192 1100000 22.0723 2 0.0 -22.0723

Table 4: 19 of 23

g n̄i n̄e ξ̄, (%) ζ̄, (%) E

g1 23168 3383 84.88 97.02 9.2915E-03

g2 23168 3058 86.28 97.31 1.0860E-05

g3 23168 3931 82.39 96.54 3.2553E-01

g4 23168 3410 84.78 97.00 3.8846E-04

Table 5: 20 of 23

λ q Nmax N̄t N̄a N̄p

7 3 3280 272 20 8101

Table 6: 21 of 23

ε δ
g1 g2 g3 g4

ξ̄, (%) E ξ̄, (%) E ξ̄, (%) E ξ̄, (%) E

0.001

0.1 42.23 1.50E-03 44.38 3.14E-06 32.15 3.82E-03 41.23 1.21E-05

0.5 45.54 1.57E-03 55.16 3.26E-06 34.15 3.64E-02 51.26 1.68E-05

1.0 60.06 2.05E-03 62.35 4.28E-06 60.12 4.22E-02 58.14 1.95E-04

0.005

0.1 76.65 2.36E-03 64.29 6.25E-06 65.27 4.26E-02 69.26 2.68E-04

0.5 77.26 5.26E-03 68.25 8.26E-06 71.26 4.59E-02 76.65 2.57E-04

1.0 78.96 6.27E-03 70.15 1.03E-05 74.92 6.26E-02 82.64 3.26E-04

0.01

0.1 84.88 9.29E-03 86.28 1.09E-05 82.39 3.26E-01 84.78 3.88E-04

0.5 85.16 1.02E-02 86.31 3.49E-05 82.69 6.26E-01 85.06 6.57E-04

1.0 85.21 8.27E-02 86.65 5.32E-05 82.98 8.26E-01 85.65 8.27E-04

Table 7: 22 of 23

g n̄i n̄e ξ̄, (%) ζ̄, (%) E

g1 10761 2094 80.54 98.16 3.4354E-02

g2 10761 1932 82.05 98.30 1.0475E-02

g3 10761 2346 78.20 97.94 1.1426E-01

g4 10761 2105 80.44 98.15 2.4638E-02

Table 8: 23 of 23

