13 research outputs found

    The Effect of Mechanical Activation on the Physico-Chemical Properties of Carbon Black and Rubber Mixtures Filled with It

    Get PDF
    Исследовано влияние механической активации на пористость, структурность по абсорбции дибутилфталата (ДБФ), размеры агломератов и функциональный покров поверхности технического углерода (ТУ) марки N375. Установлено, что в процессе механической активации возрастает количество кислородсодержащих групп на поверхности ТУ от 0,12 до 0,34 мэкв/г и снижается размер агрегатов от 300 до 3-5 мкм. Одновременно снижается величина абсорбции ДБФ. Резина, получаемая на основе смеси каучука марки СКМС-30 АРК и механоактивированного ТУ, отличается повышенными значениями относительного удлинения при растяжении и более низким модулем упругостиThe influence of mechanical activation on porosity, structure (by absorption of dibutyl phthalate (DBP), the size of the agglomerates and the functional surface of the carbon black (CB) N375 was investigated. It was established that in the process of mechanical activation, the number of oxygencontaining groups on the surface CB increases to 0.34 meq/g and the size of the aggregates decreases from 300 to 3-5 microns. At the same time, the amount of absorption of DBP decreases. The rubber obtained on the basis of a mixture of SKMS-30 ARK rubber and mechanically activated CB is characterized by increased values of relative elongation under tension and a lower modulus of elasticit

    Ethylene Glycol from Formaldehyde

    No full text

    Nickel Catalysts on Carbon-Mineral Sapropel-Based Supports for Liquid-Phase Hydrogenation of Nitrobenzene

    No full text
    Nickel catalysts with carbon-mineral supports derived from sapropel were synthesized; the effect exerted by the nature of the support (type of the initial sapropel) and active component precursor on the activity of the catalysts in the model reaction of liquid-phase nitrobenzene hydrogenation was studied. The catalysts, synthesized using the support with a smaller fraction of carbon, were more active irrespective of the precursor nature. The highest activity was observed for the catalysts synthesized from nickel nitrate and formate; nitrobenzene conversion was 65% and 51%, respectively, after 1 h of reaction. The catalysts retained high activity after six reaction cycles at 100% aniline selectivity. The presence of sulfur in the nickel precursor deteriorated the catalytic activity (convection less than 3%) due to formation of the sulfide phase

    Никель- и ренийсодержащие катализаторы на основе сульфатированного диоксида циркония для совместного алкилирования бензола и изомеризации алканов

    Get PDF
    Nickel and rhenium promoted sulfated zirconia (SZ) was investigated as a catalyst for conversion of benzene–n-hexane mixture. This reaction may be used for benzene content decreasing through transformation of the latter to C7-C9 arenes by alkylation with the products of alkanes cracking. It has been shown that simultaneous benzene alkylation and n-hexane isomerization proceeds on sulfated zirconia and it is characterized with drastic deactivation due to accumulation of polycyclic aromatic compounds. Promotion of SZ with Ni and Re increases the activity in conversion of benzene and n-hexane mixture. The main pathways for benzene transformation are alkylation and hydrogenation and the main reaction for n-hexane is isomerization. Promoting effect of Ni and Re is associated with the stabilization of the activity of sulfated zirconia. The role of nickel in this case is activation of hydrogen and hydrogenation of coke precursors and the role of rhenium is hydrogenolysis of coke precursorsПроведено исследование сульфатированного диоксида циркония (SZ) с нанесенными никелем и рением как катализатора превращения смеси бензола и н-гексана. Данная реакция может быть использована для снижения содержания бензола путем превращения последнего в арены С7-С9 в результате его алкилирования продуктами крекинга алканов. Показано, что процесс может осуществляться на цирконосульфатном носителе, однако характеризуется быстрой дезактивацией, вызванной накоплением полициклических ароматических углеводородов на поверхности катализатора. Основными направлениями превращения бензола являются алкилирование и гидрирование, а основной реакцией для н-гексана – изомеризация. Введение в катализатор никеля и рения существенно повышает его активность и стабильность в целевом процессе за счет увеличения скорости реакций гидрирования, катализируемых никелем. Роль рения сводится к осуществлению реакций гидрогенолиз

    Influence of Mg/Al Ratio in Layered Double Hydroxides on Pt (IV) Chloride Complexes Sorption

    No full text
    В статье представлены результаты исследования адсорбции платинохлористоводородной кислоты на алюмомагниевых слоистых двойных гидроксидах (СДГ), содержащих преимущественно гидроксидные противоионы. Показано, что закрепление комплексных анионов [PtCl 6 ]Esults concerning investigation of chloroplatinic acid adsorption on alumina – magnesium layered hydroxides with predominantly hydroxide counterions are presented in this work. It was shown that fixation of [PtCl 6

    Influence of Mg/Al Ratio in Layered Double Hydroxides on Pt (IV) Chloride Complexes Sorption

    No full text
    В статье представлены результаты исследования адсорбции платинохлористоводородной кислоты на алюмомагниевых слоистых двойных гидроксидах (СДГ), содержащих преимущественно гидроксидные противоионы. Показано, что закрепление комплексных анионов [PtCl 6 ]Esults concerning investigation of chloroplatinic acid adsorption on alumina – magnesium layered hydroxides with predominantly hydroxide counterions are presented in this work. It was shown that fixation of [PtCl 6

    Porous Carbon–Carbon Composite Materials Obtained by Alkaline Dehydrochlorination of Polyvinyl Chloride

    No full text
    Porous carbon–carbon composite materials (PCCCM) were synthesized by the alkaline dehydrochlorination of polyvinyl chloride solutions in dimethyl sulfoxide containing the modifying additives of a nanostructured component (NC): graphite oxide (GO), reduced graphite oxide (RGO) or nanoglobular carbon (NGC), with subsequent two-step thermal treatment of the obtained polyvinylene–NC composites (carbonization at 400 °C and carbon dioxide activation at 900 °C). The focus of the study was on the analysis and digital processing of transmission electron microscopy images to study local areas of carbon composite materials, as well as to determine the distances between graphene layers. TEM and low-temperature nitrogen adsorption studies revealed that the structure of the synthesized PCCCM can be considered as a porous carbon matrix in which either carbon nanoglobules (in the case of NGC) or carbon particles with the “crumpled sheet” morphology (in the case of GO or RGO used as the modifying additives) are distributed. Depending on the features of the introduced 5–7 wt.% nanostructured component, the fraction of mesopores was shown to vary from 11% to 46%, and SBET—from 791 to 1115 m2 g−1. The synthesis of PCCNC using graphite oxide and reduced graphite oxide as the modifying additives can be considered as a method for synthesizing a porous carbon material with the hierarchical structure containing both the micro- and meso/macropores. Such materials are widely applied and can serve as adsorbents, catalyst supports, elements of power storage systems, etc

    Synthesis of CuAl-LDHs by Co-Precipitation and Mechanochemical Methods and Selective Hydrogenation Catalysts Based on Them

    No full text
    The paper presents the results of the synthesis and study of CuAl layered double hydroxides (LDHs) as well as their application as catalysts for the selective hydrogenation of crotonaldehyde. Phase-homogeneous LDHs were obtained by co-precipitation and mechanochemical methods, and critical parameters ensuring the formation of the target product were identified. In the case of coprecipitation, the formation of LDH is most affected by the pH of the reaction medium and the CO32−/Al3+ ratio. The optimal CO32−/Al3+ ratio is ca. 0.5–0.8 and pH 9.5–10.0. When mechanochemical synthesis is used, at 500 m·s−2 and 60 min, it is possible to obtain a single-phase CuAl LDH, whereas at higher energies, LDH is destroyed. The mechanochemical method makes it possible not only to reduce the synthesis time and the amount of alkaline wash water but also to obtain more dispersed copper particles with a higher hydrogenating activity. The conversion of 2-butenal (T = 80 °C, P = 0.5 MPa, 180 min, ethanol) for this sample was 99.9%, in contrast to 50.5% for the catalyst obtained by co-precipitation. It is important that, regardless of the conversion, both catalysts showed high selectivity (S = 90–95%) for the double bond hydrogenation

    Catalysts Derived from Nickel-Containing Layered Double Hydroxides for Aqueous-Phase Furfural Hydrogenation

    No full text
    Changes in the structural and textural properties of NiAl-layered double hydroxides (LDHs) (with 2–4 molar ratios of metals) and state of nickel that occur in different steps of the synthesis of nickel catalysts were studied using XRD, thermal analysis, TPR, low-temperature nitrogen adsorption, XANES, EXAFS, and electron microscopy methods. Relations between nickel content, catalyst reduction conditions, state of nickel, and its catalytic properties were revealed. It was shown that the use of NiAl LDH as the catalyst precursor even at a high content of active metal allows for the obtaining of the dispersed particles of supported nickel that are active in the aqueous-phase hydrogenation of furfural. The catalyst activity and conversion of furfural were found to increase with elevation of the catalyst reduction temperature and the corresponding growth of the fraction of reduced nickel. However, a lower reduction temperature (500 °C) makes it possible to form smaller nickel particles with the size of 4–6 nm, and a high Ni content (Ni:Al = 4) can be used to obtain the active Ni@NiAlOx catalyst. Under mild reaction conditions (90 °C, 2.0 MPa), the furfural conversion reached 93%, and furfuryl alcohol was formed with the selectivity of 70%. Under more severe reaction conditions (150 °C, 3.0 MPa), complete conversion of furfural was achieved, and cyclopentanol and tetrahydrofurfuryl alcohol were the main hydrogenation products
    corecore