28 research outputs found

    Gravity effects on thick brane formation from scalar field dynamics

    Full text link
    The formation of a thick brane in five-dimen\-sional space-time is investigated when warp geometries of AdS5AdS_5 type are induced by scalar matter dynamics and triggered by a thin-brane defect. The scalar matter is taken to consist of two fields with O(2)O(2) symmetric self interaction and with manifest O(2)O(2) symmetry breaking by terms quadratic in fields. One of them serves as a thick brane formation mode around a kink background and another one is of a Higgs-field type which may develop a classical background as well. Scalar matter interacts with gravity in the minimal form and gravity effects on (quasi)localized scalar fluctuations are calculated with usage of gauge invariant variables suitable for perturbation expansion. The calculations are performed in the vicinity of the critical point of spontaneous breaking of the combined parity symmetry where a non-trivial v.e.v. of the Higgs-type scalar field is generated. The nonperturbative discontinuous gravitational effects in the mass spectrum of light localized scalar states are studied in the presence of a thin-brane defect. The thin brane with negative tension happens to be the most curious case when the singular barriers form a potential well with two infinitely tall walls and the discrete spectrum of localized states arises completely isolated from the bulk.Comment: 15 pages, minor corrections, two-column EPJ-C styl

    Chiral perturbation theory vs. linear sigma model in a chiral imbalance medium

    Get PDF
    We compare the chiral perturbation theory (ChPT) and the linear sigma model (LSM) as realizations of low energy quantum chromodynamics (QCD) for light mesons in a chirally-imbalanced medium. The relations between the low-energy constants of the chiral Lagrangian and the corresponding constants of the linear sigma model are established as well as the expressions for the decay constant of π -meson in the medium and for the mass of the a0. In the large Nc count taken from QCD the correspondence of ChPT and LSM is remarkably good and provides a solid ground for the search of chiral imbalance manifestations in pion physics. A possible experimental detection of chiral imbalance (and therefore a phase with local parity breaking) is outlined in the charged pion decays inside the fireball

    QCD with chiral chemical potential: Models versus lattice

    Get PDF
    An emergence of local spatial parity breaking (LPB) in central heavy-ion collisions (HIC) at high energies is discussed. The QCD phenomenology of LPB in the fireball is induced by a difference between the number densities of right- and left-handed chiral fermions which is triggered by a chiral (axial) chemical potential. For the description of peculiarities of LPB, a number of QCD-inspired models are considered and confronted to certain lattice results. In particular, from the meson effective Lagrangian, it is found that the lightest states may become massless and some scalars turn out to be stable. In experimental studies, the asymmetry in production of longitudinal and transverse polarized states of ρ and ω mesons for different values of the invariant mass can serve as a characteristic indication of local spatial parity breaking which can be derived from an abnormal yield of dilepton pairs in the PHENIX, STAR and ALICE collaborations

    Spontaneous parity violation under extreme conditions: An effective lagrangian analysis

    Get PDF
    We investigate how large baryon densities (and possibly high temperatures) may induce spontaneous parity violation in the composite meson sector of vector-like gauge theory (presumably QCD or techni-QCD). The analysis at intermediate energy scales is done by using an extended σσ -model lagrangian that includes two scalar and two pseudoscalar multiplets and fulfills low-energy constraints for vector-like gauge theories. We elaborate on a novel mechanism of parity breaking based on the interplay between lightest and heavier meson condensates, which therefore cannot be realized in the simplest σσ model. The results are relevant for idealized homogeneous and infinite nuclear (quark or techniquark) matter where the influence of the density can be examined with the help of a constant chemical potential. The model is able to describe satisfactorily the first-order phase transition to stable nuclear matter, and it predicts a second-order phase transition to a state where parity is spontaneously broken. We argue that the parity breaking phenomenon is quite generic when a large enough chemical potential is present. Current quark masses are explicitly taken into account in this work and shown not to change the general conclusions

    Analysis of dilepton angular distributions in a parity breaking medium

    Get PDF
    We investigate how local parity breaking due to large topological fluctuations may affect hadron physics. A modified dispersion relation is derived for the lightest vector mesons ρ and ω. They exhibit a mass splitting depending on their polarization. We present a detailed analysis of the angular distribution associated to the lepton pairs created from these mesons searching for polarization dependencies. We propose two angular variables that carry information related to the parity breaking effect. Possible signatures for experimental detection of local parity breaking that could potentially be seen by the PHENIX and STAR collaborations are discussed

    Stellar matter with pseudoscalar condensates

    Get PDF
    In this work we consider how the appearance of gradients of pseudoscalar condensates in dense systems may possibly influence the transport properties of photons in such a medium as well as other thermodynamic characteristics. We adopt the hypothesis that in regions where the pseudoscalar density gradient is large the properties of photons and fermions are governed by the usual lagrangian extended with a Chern-Simons interaction for photons and a constant axial field for fermions. We find that these new pieces in the lagrangian produce non-trivial reflection coefficients both for photons and fermions when entering or leaving a region where the pseudoscalar has a non-zero gradient. A varying pseudoscalar density may also lead to instability of some fermion and boson modes and modify some properties of the Fermi sea. We speculate that some of these modifications could influence the cooling rate of stellar matter (for instance in compact stars) and have other observable consequences. While quantitative results may depend on the precise astrophysical details most of the consequences are quite universal and consideration should be given to this possibility
    corecore