34 research outputs found

    Formal concept analysis constrained by attributedependency formulas. In:

    Get PDF
    Abstract. An important topic in formal concept analysis is to cope with a possibly large number of formal concepts extracted from formal context (input data). We propose a method to reduce the number of extracted formal concepts by means of constraints expressed by particular formulas (attribute-dependency formulas, ADF). ADF represent a form of dependencies specified by a user expressing relative importance of attributes. ADF are considered as additional input accompanying the formal context X, Y, I . The reduction consists in considering formal concepts which are compatible with a given set of ADF and leaving out noncompatible concepts. We present basic properties related to ADF, an algorithm for generating the reduced set of formal concepts, and demonstrating examples

    Structure of the dimeric N-glycosylated form of fungal β-N-acetylhexosaminidase revealed by computer modeling, vibrational spectroscopy, and biochemical studies

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Fungal β-<it>N</it>-acetylhexosaminidases catalyze the hydrolysis of chitobiose into its constituent monosaccharides. These enzymes are physiologically important during the life cycle of the fungus for the formation of septa, germ tubes and fruit-bodies. Crystal structures are known for two monomeric bacterial enzymes and the dimeric human lysosomal β-<it>N</it>-acetylhexosaminidase. The fungal β-<it>N</it>-acetylhexosaminidases are robust enzymes commonly used in chemoenzymatic syntheses of oligosaccharides. The enzyme from <it>Aspergillus oryzae </it>was purified and its sequence was determined.</p> <p>Results</p> <p>The complete primary structure of the fungal β-<it>N</it>-acetylhexosaminidase from <it>Aspergillus oryzae </it>CCF1066 was used to construct molecular models of the catalytic subunit of the enzyme, the enzyme dimer, and the <it>N</it>-glycosylated dimer. Experimental data were obtained from infrared and Raman spectroscopy, and biochemical studies of the native and deglycosylated enzyme, and are in good agreement with the models. Enzyme deglycosylated under native conditions displays identical kinetic parameters but is significantly less stable in acidic conditions, consistent with model predictions. The molecular model of the deglycosylated enzyme was solvated and a molecular dynamics simulation was run over 20 ns. The molecular model is able to bind the natural substrate – chitobiose with a stable value of binding energy during the molecular dynamics simulation.</p> <p>Conclusion</p> <p>Whereas the intracellular bacterial β-<it>N</it>-acetylhexosaminidases are monomeric, the extracellular secreted enzymes of fungi and humans occur as dimers. Dimerization of the fungal β-<it>N</it>-acetylhexosaminidase appears to be a reversible process that is strictly pH dependent. Oligosaccharide moieties may also participate in the dimerization process that might represent a unique feature of the exclusively extracellular enzymes. Deglycosylation had only limited effect on enzyme activity, but it significantly affected enzyme stability in acidic conditions. Dimerization and <it>N</it>-glycosylation are the enzyme's strategy for catalytic subunit stabilization. The disulfide bridge that connects Cys<sup>448 </sup>with Cys<sup>483 </sup>stabilizes a hinge region in a flexible loop close to the active site, which is an exclusive feature of the fungal enzymes, neither present in bacterial nor mammalian structures. This loop may play the role of a substrate binding site lid, anchored by a disulphide bridge that prevents the substrate binding site from being influenced by the flexible motion of the loop.</p

    Raman spectroscopic detection of the T-HgII-T base pair and the ionic characteristics of mercury

    Get PDF
    Developing applications for metal-mediated base pairs (metallo-base-pair) has recently become a high-priority area in nucleic acid research, and physicochemical analyses are important for designing and fine-tuning molecular devices using metallo-base-pairs. In this study, we characterized the HgII-mediated T-T (T-HgII-T) base pair by Raman spectroscopy, which revealed the unique physical and chemical properties of HgII. A characteristic Raman marker band at 1586 cm−1 was observed and assigned to the C4=O4 stretching mode. We confirmed the assignment by the isotopic shift (18O-labeling at O4) and density functional theory (DFT) calculations. The unusually low wavenumber of the C4=O4 stretching suggested that the bond order of the C4=O4 bond reduced from its canonical value. This reduction of the bond order can be explained if the enolate-like structure (N3=C4-O4−) is involved as a resonance contributor in the thymine ring of the T-HgII-T pair. This resonance includes the N-HgII-bonded state (HgII-N3-C4=O4) and the N-HgII-dissociated state (HgII+ N3=C4-O4−), and the latter contributor reduced the bond order of N-HgII. Consequently, the HgII nucleus in the T-HgII-T pair exhibited a cationic character. Natural bond orbital (NBO) analysis supports the interpretations of the Raman experiments
    corecore