1,848 research outputs found

    Trajectory structures and transport

    Full text link
    The special problem of transport in 2-dimensional divergence-free stochastic velocity fields is studied by developing a statistical approach, the nested subensemble method. The nonlinear process of trapping determined by such fields generates trajectory structures whose statistical characteristics are determined. These structures strongly influence the transport.Comment: Latex file 19 pages, includes 12 EPS figures. Extended version of the invited talk at the ITCPP, Santorini, 200

    Improving Postdischarge Outcomes in Acute Heart Failure

    Get PDF
    The global burden that acute heart failure (AHF) carries has remained unchanged over the past several decades (1). European registries (2–5) showed that 1-year outcome rates remain unacceptably high (Table 1) and confirm that hospitalization for AHF represents a change in the natural history of the disease process(6). As patients hospitalized for HF have a bad prognosis, it is crucial to utilize hospitalization as an opportunity to: 1) assess the individual components of the cardiac substrate; 2) identify and treat comorbidities; 3) identify early, safe endpoints of therapy to facilitate timely hospital discharge and outpatient follow-up; and 4) implement and begin optimization guideline-directed medical therapies (GDMTs). As outcomes are influenced by many factors, many of which are incompletely understood, a systematic approach is proposed that should start with admission and continues through post-discharge (7)

    Fingerprints of Random Flows?

    Full text link
    We consider the patterns formed by small rod-like objects advected by a random flow in two dimensions. An exact solution indicates that their direction field is non-singular. However, we find from simulations that the direction field of the rods does appear to exhibit singularities. First, ` scar lines' emerge where the rods abruptly change direction by π\pi. Later, these scar lines become so narrow that they ` heal over' and disappear, but their ends remain as point singularities, which are of the same type as those seen in fingerprints. We give a theoretical explanation for these observations.Comment: 21 pages, 11 figure

    Synthesis and Characterization of Three-Coordinate Ni(III)-Imide Complexes

    Get PDF
    A new family of low-coordinate nickel imides supported by 1,2-bis(di-tert-butylphosphino)ethane was synthesized. Oxidation of nickel(II) complexes led to the formation of both aryl- and alkyl-substituted nickel(III)-imides, and examples of both types have been isolated and fully characterized. The aryl substituent that proved most useful in stabilizing the Ni(III)-imide moiety was the bulky 2,6-dimesitylphenyl. The two Ni(III)-imide compounds showed different variable-temperature magnetic properties but analogous EPR spectra at low temperatures. To account for this discrepancy, a low-spin/high-spin equilibrium was proposed to take place for the alkyl-substituted Ni(III)-imide complex. This proposal was supported by DFT calculations. DFT calculations also indicated that the unpaired electron is mostly localized on the imide nitrogen for the Ni(III) complexes. The results of reactions carried out in the presence of hydrogen donors supported the findings from DFT calculations that the adamantyl substituent was a significantly more reactive hydrogen-atom abstractor. Interestingly, the steric properties of the 2,6-dimesitylphenyl substituent are important not only in protecting the Ni═N core but also in favoring one rotamer of the resulting Ni(III)-imide, by locking the phenyl ring in a perpendicular orientation with respect to the NiPP plane

    Spin transport in ferromagnet-InSb nanowire quantum devices

    Full text link
    Signatures of Majorana zero modes (MZMs), which are the building blocks for fault-tolerant topological quantum computing, have been observed in semiconductor nanowires (NW) with strong spin-orbital-interaction (SOI), such as InSb and InAs NWs with proximity-induced superconductivity. Realizing topological superconductivity and MZMs in this most widely-studied platform also requires eliminating spin degeneracy, which is realized by applying a magnetic field to induce a helical gap. However, the applied field can adversely impact the induced superconducting state in the NWs and also places geometric restrictions on the device, which can affect scaling of future MZM-based quantum registers. These challenges could be circumvented by integrating magnetic elements with the NWs. With this motivation, in this work we report the first experimental investigation of spin transport across InSb NWs, which are enabled by devices with ferromagnetic (FM) contacts. We observe signatures of spin polarization and spin-dependent transport in the quasi-one-dimensional ballistic regime. Moreover, we show that electrostatic gating tunes the observed magnetic signal and also reveals a transport regime where the device acts as a spin filter. These results open an avenue towards developing MZM devices in which spin degeneracy is lifted locally, without the need of an applied magnetic field. They also provide a path for realizing spin-based devices that leverage spin-orbital states in quantum wires.Comment: 30 pages, 12 figure

    Phase behaviour of coarse-grained fluids

    Full text link
    Soft condensed matter structures often challenge us with complex many-body phenomena governed by collective modes spanning wide spatial and temporal domains. In order to successfully tackle such problems mesoscopic coarse-grained (CG) statistical models are being developed, providing a dramatic reduction in computational complexity. CG models provide an intermediate step in the complex statistical framework of linking the thermodynamics of condensed phases with the properties of their constituent atoms and molecules. These allow us to offload part of the problem to the CG model itself and reformulate the remainder in terms of reduced CG phase space. However, such exchange of pawns to chess pieces, or ``Hamiltonian renormalization'', is a radical step and the thermodynamics of the primary atomic and CG models could be markedly different. Here, we present a comprehensive study of the phase diagram including binodal and interfacial properties of a novel soft CG model, which includes finite-range attraction and supports liquid phases. Although the model is rooted in similar arguments to the Lennard-Jones (LJ) atomic pair potential, its phase behaviour is qualitatively different from that of LJ and features several anomalies such as an unusually broad liquid range, change in concavity of the liquid coexistence branch with variation of the model parameters, volume contraction on fusion, temperature of maximum density in the liquid phase and negative thermal expansion in the solid phase. These results provide new insight into the connection between simple potential models and complex emergent condensed matter phenomena.Comment: 10 pages, full pape
    corecore